




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
三角函數(shù)(初等函數(shù)二)3、及角終邊相同的角的集合為7、弧度制及角度制的換算公式:,,.8、若扇形的圓心角為,半徑為,弧長(zhǎng)為,周長(zhǎng)為,面積為,則,,.9、設(shè)是一個(gè)任意大小的角,的終邊上任意一點(diǎn)的坐標(biāo)是,它及原點(diǎn)的距離是,則,,.10、三角函數(shù)在各象限的符號(hào):第一象限全為正,第二象限正弦為正,第三象限正切為正,第四象限余弦為正.11、三角函數(shù)線:,,.PvxPvxyAOMT;15、正弦函數(shù)、余弦函數(shù)和正切函數(shù)的圖象及性質(zhì):函函數(shù)性質(zhì)圖象定義域值域最值當(dāng)時(shí),;當(dāng)時(shí),.當(dāng)時(shí),;當(dāng)時(shí),.既無最大值也無最小值周期性奇偶性奇函數(shù)偶函數(shù)奇函數(shù)單調(diào)性在上是增函數(shù);在上是減函數(shù).在上是增函數(shù);在上是減函數(shù).在上是增函數(shù).對(duì)稱性對(duì)稱中心對(duì)稱軸對(duì)稱中心對(duì)稱軸對(duì)稱中心無對(duì)稱軸24、兩角和及差的正弦、余弦和正切公式:=1\*GB2⑴;=2\*GB2⑵;=3\*GB2⑶;=4\*GB2⑷;=5\*GB2⑸();=6\*GB2⑹().25、二倍角的正弦、余弦和正切公式:=1\*GB2⑴.=2\*GB2⑵(,).=3\*GB2⑶.26、,其中.必修5第一章解三角形1、正弦定理:在中,、、分別為角、、的對(duì)邊,為的外接圓的半徑,則有.2、正弦定理的變形公式:=1\*GB3①,,;=2\*GB3②,,;=3\*GB3③;=4\*GB3④.(正弦定理主要用來解決兩類問題:1、已知兩邊和其中一邊所對(duì)的角,求其余的量。2、已知兩角和一邊,求其余的量。)3、三角形面積公式:.4、余弦定理:在中,有,,.5、余弦定理的推論:,,.(余弦定理主要解決的問題:1、已知兩邊和夾角,求其余的量。2、已知三邊求角)6、如何判斷三角形的形狀:設(shè)、、是的角、、的對(duì)邊,則:=1\*GB3①若,則;=2\*GB3②若,則;=3\*GB3③若,則.附:三角形的四個(gè)“心”;重心:三角形三條中線交點(diǎn).外心:三角形三邊垂直平分線相交于一點(diǎn).內(nèi)心:三角形三內(nèi)角的平分線相交于一點(diǎn).垂心:三角形三邊上的高相交于一點(diǎn)第二章數(shù)列11、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)及它的前一項(xiàng)的差等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等差數(shù)列,這個(gè)常數(shù)稱為等差數(shù)列的公差.符號(hào)表示:。注:看數(shù)列是不是等差數(shù)列有以下三種方法:①②2()③(為常數(shù)12、由三個(gè)數(shù),,組成的等差數(shù)列可以看成最簡(jiǎn)單的等差數(shù)列,則稱為及的等差中項(xiàng).若,則稱為及的等差中項(xiàng).13、若等差數(shù)列的首項(xiàng)是,公差是,則.14、通項(xiàng)公式的變形:=1\*GB3①;=2\*GB3②;=3\*GB3③;=4\*GB3④;=5\*GB3⑤.15、若是等差數(shù)列,且(、、、),則;若是等差數(shù)列,且(、、),則.16、等差數(shù)列的前項(xiàng)和的公式:=1\*GB3①;=2\*GB3②.③18、如果一個(gè)數(shù)列從第項(xiàng)起,每一項(xiàng)及它的前一項(xiàng)的比等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等比數(shù)列,這個(gè)常數(shù)稱為等比數(shù)列的公比.符號(hào)表示:(注:①等比數(shù)列中不會(huì)出現(xiàn)值為0的項(xiàng);②同號(hào)位上的值同號(hào))注:看數(shù)列是不是等比數(shù)列有以下四種方法:①②(,)③(為非零常數(shù)).④正數(shù)列{}成等比的充要條件是數(shù)列{}()成等比數(shù)列.19、在及中間插入一個(gè)數(shù),使,,成等比數(shù)列,則稱為及的等比中項(xiàng).若,則稱為及的等比中項(xiàng).(注:由不能得出,,成等比,由,,)20、若等比數(shù)列的首項(xiàng)是,公比是,則.21、通項(xiàng)公式的變形:=1\*GB3①;22、若是等比數(shù)列,且(、、、),則;若是等比數(shù)列,且(、、),則.23、等比數(shù)列的前項(xiàng)和的公式:①.②24、對(duì)任意的數(shù)列{}的前項(xiàng)和及通項(xiàng)的關(guān)系:③非零常數(shù)列既可為等比數(shù)列,也可為等差數(shù)列.(不是非零,即不可能有等比數(shù)列)附:數(shù)列求和的常用方法1.公式法:適用于等差、等比數(shù)列或可轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列。2.裂項(xiàng)相消法:適用于其中{}是各項(xiàng)不為0的等差數(shù)列,c為常數(shù);部分無理數(shù)列、含階乘的數(shù)列等。3.錯(cuò)位相減法:適用于其中{}是等差數(shù)列,是各項(xiàng)不為0的等比數(shù)列。4.倒序相加法:類似于等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法.第三章不等式一元二次不等式的求解:特例①一元一次不等式ax>b解的討論;②一元二次不等式ax2+bx+c>0(a>0)解的討論.二次函數(shù)()的圖象一元二次方程有兩相異實(shí)根有兩相等實(shí)根無實(shí)根R對(duì)于a<0的不等式可以先把a(bǔ)化為正后用上表來做即可。11、設(shè)、是兩個(gè)正數(shù),則稱為正數(shù)、的算術(shù)平均數(shù),稱為正數(shù)、的幾何平均數(shù).12、均值不等式定理:若,,則,即.13、常用的基本不等式:=1\*GB3①;=2\*GB3②;=3\*GB3③;=4\*GB3④.14、極值定理:設(shè)、都為正數(shù),則有:=1\*GB2⑴若(和為定值),則當(dāng)時(shí),積取得最大值.=2\*GB2⑵若(積為定值),則當(dāng)時(shí),和取得最小值.1、命題:用語言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句.真命題:判斷為真的語句.假命題:判斷為假的語句.2、“若,則”形式的命題中的稱為命題的條件,稱為命題的結(jié)論.3、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論分別是另一個(gè)命題的結(jié)論和條件,則這兩個(gè)命題稱為互逆命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆命題.若原命題為“若,則”,它的逆命題為“若,則”.4、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的條件的否定和結(jié)論的否定,則這兩個(gè)命題稱為互否命題.中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的否命題.若原命題為“若,則”,則它的否命題為“若,則”.5、對(duì)于兩個(gè)命題,如果一個(gè)命題的條件和結(jié)論恰好是另一個(gè)命題的結(jié)論的否定和條件的否定,則這兩個(gè)命題稱為互為逆否命題.其中一個(gè)命題稱為原命題,另一個(gè)稱為原命題的逆否命題.若原命題為“若,則”,則它的否命題為“若,則”.6、四種命題的真假性:原命題逆命題否命題逆否命題真真真真真假假真假真真真假假假假四種命題的真假性之間的關(guān)系:兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.7、若,則是的充分條件,是的必要條件.若,則是的充要條件(充分必要條件).8、用聯(lián)結(jié)詞“且”把命題和命題聯(lián)結(jié)起來,得到一個(gè)新命題,記作.當(dāng)、都是真命題時(shí),是真命題;當(dāng)、兩個(gè)命題中有一個(gè)命題是假命題時(shí),是假命題.用聯(lián)結(jié)詞“或”把命題和命題聯(lián)結(jié)起來,得到一個(gè)新命題,記作.當(dāng)、兩個(gè)命題中有一個(gè)命題是真命題時(shí),是真命題;當(dāng)、兩個(gè)命題都是假命題時(shí),是假命題.對(duì)一個(gè)命題全盤否定,得到一個(gè)新命題,記作.若是真命題,則必是假命題;若是假命題,則必是真命題.9、短語“對(duì)所有的”、“對(duì)任意一個(gè)”在邏輯中通常稱為全稱量詞,用“”表示.含有全稱量詞的命題稱為全稱命題.全稱命題“對(duì)中任意一個(gè),有成立”,記作“,”.短語“存在一個(gè)”、“至少有一個(gè)”在邏輯中通常稱為存在量詞,用“”表示.含有存在量詞的命題稱為特稱命題.特稱命題“存在中的一個(gè),使成立”,記作“,”.10、全稱命題:,,它的否定:,.全稱命題的否定是特稱命題.11、平面內(nèi)及兩個(gè)定點(diǎn),的距離之和等于常數(shù)(大于)的點(diǎn)的軌跡稱為橢圓.這兩個(gè)定點(diǎn)稱為橢圓的焦點(diǎn),兩焦點(diǎn)的距離稱為橢圓的焦距.12、橢圓的幾何性質(zhì):焦點(diǎn)的位置焦點(diǎn)在軸上焦點(diǎn)在軸上圖形標(biāo)準(zhǔn)方程范圍且且頂點(diǎn)、、、、軸長(zhǎng)短軸的長(zhǎng)長(zhǎng)軸的長(zhǎng)焦點(diǎn)、、焦距對(duì)稱性關(guān)于軸、軸、原點(diǎn)對(duì)稱離心率準(zhǔn)線方程13、設(shè)是橢圓上任一點(diǎn),點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離為,點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離為,則.14、平面內(nèi)及兩個(gè)定點(diǎn),的距離之差的絕對(duì)值等于常數(shù)(小于)的點(diǎn)的軌跡稱為雙曲線.這兩個(gè)定點(diǎn)稱為雙曲線的焦點(diǎn),兩焦點(diǎn)的距離稱為雙曲線的焦距15、雙曲線的幾何性質(zhì):焦點(diǎn)的位置焦點(diǎn)在軸上焦點(diǎn)在軸上圖形標(biāo)準(zhǔn)方程范圍或,或,頂點(diǎn)、、軸長(zhǎng)虛軸的長(zhǎng)實(shí)軸的長(zhǎng)焦點(diǎn)、、焦距對(duì)稱性關(guān)于軸、軸對(duì)稱,關(guān)于原點(diǎn)中心對(duì)稱離心率準(zhǔn)線方程漸近線方程16、實(shí)軸和虛軸等長(zhǎng)的雙曲線稱為等軸雙曲線.17、設(shè)是雙曲線上任一點(diǎn),點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離為,點(diǎn)到對(duì)應(yīng)準(zhǔn)線的距離為,則.18、平面內(nèi)及一個(gè)定點(diǎn)和一條定直線的距離相等的點(diǎn)的軌跡稱為拋物線.定點(diǎn)稱為拋物線的焦點(diǎn),定直線稱為拋物線的準(zhǔn)線.19、過拋物線的焦點(diǎn)作垂直于對(duì)稱軸且交拋物線于、兩點(diǎn)的線段,稱為拋物線的“通徑”,即.20、焦半徑公式:若點(diǎn)在拋物線上,焦點(diǎn)為,則;若點(diǎn)在拋物線上,焦點(diǎn)為,則;若點(diǎn)在拋物線上,焦點(diǎn)為,則;若點(diǎn)在拋物線上,焦點(diǎn)為,則.21、拋物線的幾何性質(zhì):標(biāo)準(zhǔn)方程圖形頂點(diǎn)對(duì)稱軸軸軸焦點(diǎn)準(zhǔn)線方程離心率范圍22、空間向量的概念:在空間,具有大小和方向的量稱為空間向量.向量可用一條有向線段來表示.有向線段的長(zhǎng)度表示向量的大小,箭頭所指的方向表示向量的方向.向量的大小稱為向量的模(或長(zhǎng)度),記作.模(或長(zhǎng)度)為的向量稱為零向量;模為的向量稱為單位向量.及向量長(zhǎng)度相等且方向相反的向量稱為的相反向量,記作.方向相同且模相等的向量稱為相等向量.23、空間向量的加法和減法:求兩個(gè)向量和的運(yùn)算稱為向量的加法,它遵循平行四邊形法則.即:在空間以同一點(diǎn)為起點(diǎn)的兩個(gè)已知向量、為鄰邊作平行四邊形,則以起點(diǎn)的對(duì)角線就是及的和,這種求向量和的方法,稱為向量加法的平行四邊形法則.求兩個(gè)向量差的運(yùn)算稱為向量的減法,它遵循三角形法則.即:在空間任取一點(diǎn),作,,則.24、實(shí)數(shù)及空間向量的乘積是一個(gè)向量,稱為向量的數(shù)乘運(yùn)算.當(dāng)時(shí),及方向相同;當(dāng)時(shí),及方向相反;當(dāng)時(shí),為零向量,記為.的長(zhǎng)度是的長(zhǎng)度的倍.25、設(shè),為實(shí)數(shù),,是空間任意兩個(gè)向量,則數(shù)乘運(yùn)算滿足分配律及結(jié)合律.分配律:;結(jié)合律:.26、如果表示空間的有向線段所在的直線互相平行或重合,則這些向量稱為共線向量或平行向量,并規(guī)定零向量及任何向量都共線.27、向量共線的充要條件:對(duì)于空間任意兩個(gè)向量,,的充要條件是存在實(shí)數(shù),使.28、平行于同一個(gè)平面的向量稱為共面向量.29、向量共面定理:空間一點(diǎn)位于平面內(nèi)的充要條件是存在有序?qū)崝?shù)對(duì),,使;或?qū)臻g任一定點(diǎn),有;或若四點(diǎn),,,共面,則.30、已知兩個(gè)非零向量和,在空間任取一點(diǎn),作,,則稱為向量,的夾角,記作.兩個(gè)向量夾角的取值范圍是:.31、對(duì)于兩個(gè)非零向量和,若,則向量,互相垂直,記作.32、已知兩個(gè)非零向量和,則稱為,的數(shù)量積,記作.即.零向量及任何向量的數(shù)量積為.33、等于的長(zhǎng)度及在的方向上的投影的乘積.34、若,為非零向量,為單位向量,則有;;,,;;.35、向量數(shù)乘積的運(yùn)算律:;;.36、若,,是空間三個(gè)兩兩垂直的向量,則對(duì)空間任一向量,存在有序?qū)崝?shù)組,使得,稱,,為向量在,,上的分量.37、空間向量基本定理:若三個(gè)向量,,不共面,則對(duì)空間任一向量,存在實(shí)數(shù)組,使得.38、若三個(gè)向量,,不共面,則所有空間向量組成的集合是.這個(gè)集合可看作是由向量,,生成的,稱為空間的一個(gè)基底,,,稱為基向量.空間任意三個(gè)不共面的向量都可以構(gòu)成空間的一個(gè)基底.39、設(shè),,為有公共起點(diǎn)的三個(gè)兩兩垂直的單位向量(稱它們?yōu)閱挝徽换祝?,以,,的公共起點(diǎn)為原點(diǎn),分別以,,的方向?yàn)檩S,軸,軸的正方向建立空間直角坐標(biāo)系.則對(duì)于空間任意一個(gè)向量,一定可以把它平移,使它的起點(diǎn)及原點(diǎn)重合,得到向量.存在有序?qū)崝?shù)組,使得.把,,稱作向量在單位正交基底,,下的坐標(biāo),記作.此時(shí),向量的坐標(biāo)是點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo).40、設(shè),,則....若、為非零向量,則.若,則...,,則.41、在空間中,取一定點(diǎn)作為基點(diǎn),則空間中任意一點(diǎn)的位置可以用向量來表示.向量稱為點(diǎn)的位置向量.42、空間中任意一條直線的位置可以由上一個(gè)定點(diǎn)以及一個(gè)定方向確定.點(diǎn)是直線上一點(diǎn),向量表示直線的方向向量,則對(duì)于直線上的任意一點(diǎn),有,這樣點(diǎn)和向量不僅可以確定直線的位置,還可以具體表示出直線上的任意一點(diǎn).43、空間中平面的位置可以由內(nèi)的兩條相交直線來確定.設(shè)這兩條相交直線相交于點(diǎn),它們的方向向量分別為,.為平面上任意一點(diǎn),存在有序?qū)崝?shù)對(duì),使得,這樣點(diǎn)及向量,就確定了平面的位置.44、直線垂直,取直線的方向向量,則向量稱為平面的法向量.45、若空間不重合兩條直線,的方向向量分別為,,則,.46、若直線的方向向
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Module 8 Sports Life Unit 1 教學(xué)設(shè)計(jì) 2024-2025學(xué)年外研版九年級(jí)英語上冊(cè)
- 副會(huì)長(zhǎng)聘用合同范本
- 前置物業(yè)合同范本
- 勞務(wù)分包泥工合同范本
- 公墓bot項(xiàng)目合同范本
- gps銷售合同范本
- 2024年新疆格瑞汀新材料科技有限公司招聘考試真題
- 七人合同范本
- 勞務(wù)裝修合同范本
- 2024年黑龍江省選調(diào)考試真題
- 口腔正畸學(xué)單詞
- 2022牛排消費(fèi)趨勢(shì)報(bào)告
- TPM╲t4Step Manul(三星TPM絕密資料)
- 細(xì)菌群體感應(yīng)系統(tǒng)及其應(yīng)用課件
- 司法鑒定程序通則(試行)
- 內(nèi)襯修復(fù)用HTPO管材企標(biāo)
- 部編教材一年級(jí)下冊(cè)生字筆順筆畫
- 通達(dá)信指標(biāo)——江恩輪
- 二維火收銀使用手冊(cè)
- 神經(jīng)電生理檢查ppt課件
- 管路滑脫風(fēng)險(xiǎn)評(píng)估表
評(píng)論
0/150
提交評(píng)論