高等數(shù)學(xué)基礎(chǔ)知識點大全_第1頁
高等數(shù)學(xué)基礎(chǔ)知識點大全_第2頁
高等數(shù)學(xué)基礎(chǔ)知識點大全_第3頁
高等數(shù)學(xué)基礎(chǔ)知識點大全_第4頁
高等數(shù)學(xué)基礎(chǔ)知識點大全_第5頁
已閱讀5頁,還剩45頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

10、函數(shù)極限的運算規(guī)則前面已經(jīng)學(xué)習(xí)了數(shù)列極限的運算規(guī)則,我們知道數(shù)列可作為一類特殊的函數(shù),故函數(shù)極限的運算規(guī)則與數(shù)列極限的運算規(guī)則相似。⑴、函數(shù)極限的運算規(guī)則

若已知x→x0(或x→∞)時,.則:

推論:

在求函數(shù)的極限時,利用上述規(guī)則就可把一個復(fù)雜的函數(shù)化為若干個簡單的函數(shù)來求極限。例題:求解答:例題:求此題如果像上題那樣求解,則會發(fā)現(xiàn)此函數(shù)的極限不存在.我們通過觀察可以發(fā)現(xiàn)此分式的分子和分母都沒有極限,像這種情況怎么辦呢?下面我們把它解出來。解答:注:通過此例題我們可以發(fā)現(xiàn):當分式的分子和分母都沒有極限時就不能運用商的極限的運算規(guī)則了,應(yīng)先把分式的分子分母轉(zhuǎn)化為存在極限的情形,然后運用規(guī)則求之。函數(shù)極限的存在準則學(xué)習(xí)函數(shù)極限的存在準則之前,我們先來學(xué)習(xí)一下左、右的概念。我們先來看一個例子:例:符號函數(shù)為對于這個分段函數(shù),x從左趨于0和從右趨于0時函數(shù)極限是不相同的.為此我們定義了左、右極限的概念。定義:如果x僅從左側(cè)(x<x0)趨近x0時,函數(shù)與常量A無限接近,則稱A為函數(shù)當時的左極限.記:如果x僅從右側(cè)(x>x0)趨近x0時,函數(shù)與常量A無限接近,則稱A為函數(shù)當時的右極限.記:注:只有當x→x0時,函數(shù)的左、右極限存在且相等,方稱在x→x0時有極限函數(shù)極限的存在準則

準則一:對于點x0的某一鄰域內(nèi)的一切x,x0點本身可以除外(或絕對值大于某一正數(shù)的一切x)有≤≤,且,那末存在,且等于A注:此準則也就是夾逼準則.準則二:單調(diào)有界的函數(shù)必有極限.注:有極限的函數(shù)不一定單調(diào)有界兩個重要的極限

一:注:其中e為無理數(shù),它的值為:e=2.718281828459045...二:注:在此我們對這兩個重要極限不加以證明.注:我們要牢記這兩個重要極限,在今后的解題中會經(jīng)常用到它們.例題:求解答:令,則x=-2t,因為x→∞,故t→∞,則注:解此類型的題時,一定要注意代換后的變量的趨向情況,象x→∞時,若用t代換1/x,則t→0.無窮大量和無窮小量無窮大量我們先來看一個例子:已知函數(shù),當x→0時,可知,我們把這種情況稱為趨向無窮大。為此我們可定義如下:設(shè)有函數(shù)y=,在x=x0的去心鄰域內(nèi)有定義,對于任意給定的正數(shù)N(一個任意大的數(shù)),總可找到正數(shù)δ,當時,成立,則稱函數(shù)當時為無窮大量。記為:(表示為無窮大量,實際它是沒有極限的)同樣我們可以給出當x→∞時,無限趨大的定義:設(shè)有函數(shù)y=,當x充分大時有定義,對于任意給定的正數(shù)N(一個任意大的數(shù)),總可以找到正數(shù)M,當時,成立,則稱函數(shù)當x→∞時是無窮大量,記為:無窮小量以零為極限的變量稱為無窮小量。定義:設(shè)有函數(shù),對于任意給定的正數(shù)ε(不論它多么小),總存在正數(shù)δ(或正數(shù)M),使得對于適合不等式(或)的一切x,所對應(yīng)的函數(shù)值滿足不等式,則稱函數(shù)當(或x→∞)時為無窮小量.記作:(或)注意:無窮大量與無窮小量都是一個變化不定的量,不是常量,只有0可作為無窮小量的唯一常量。無窮大量與無窮小量的區(qū)別是:前者無界,后者有界,前者發(fā)散,后者收斂于0.無窮大量與無窮小量是互為倒數(shù)關(guān)系的.關(guān)于無窮小量的兩個定理定理一:如果函數(shù)在(或x→∞)時有極限A,則差是當(或x→∞)時的無窮小量,反之亦成立。定理二:無窮小量的有利運算定理a):有限個無窮小量的代數(shù)和仍是無窮小量;b):有限個無窮小量的積仍是無窮小量;c):常數(shù)與無窮小量的積也是無窮小量.無窮小量的比較通過前面的學(xué)習(xí)我們已經(jīng)知道,兩個無窮小量的和、差與乘積仍舊是無窮小.則兩個無窮小量的商會是怎樣的呢?好!接下來我們就來解決這個問題,這就是我們要學(xué)的兩個無窮小量的比較。定義:設(shè)α,β都是時的無窮小量,且β在x0的去心領(lǐng)域內(nèi)不為零,a):如果,則稱α是β的高階無窮小或β是α的低階無窮小;b):如果,則稱α和β是同階無窮??;c):如果,則稱α和β是等價無窮小,記作:α∽β(α與β等價)例:因為,所以當x→0時,x與3x是同階無窮??;因為,所以當x→0時,x2是3x的高階無窮小;因為,所以當x→0時,sinx與x是等價無窮小。等價無窮小的性質(zhì)設(shè),且存在,則.注:這個性質(zhì)表明:求兩個無窮小之比的極限時,分子與分母都可用等價無窮小來代替,因此我們可以利用這個性質(zhì)來簡化求極限問題。例題:1.求

解答:當x→0時,sinax∽ax,tanbx∽bx,故:例題:2.求解答:注:注:從這個例題中我們可以發(fā)現(xiàn),作無窮小變換時,要代換式中的某一項,不能只代換某個因子。函數(shù)的一重要性質(zhì)——連續(xù)性在自然界中有許多現(xiàn)象,如氣溫的變化,植物的生長等都是連續(xù)地變化著的.這種現(xiàn)象在函數(shù)關(guān)系上的反映,就是函數(shù)的連續(xù)性在定義函數(shù)的連續(xù)性之前我們先來學(xué)習(xí)一個概念——增量設(shè)變量x從它的一個初值x1變到終值x2,終值與初值的差x2-x1就叫做變量x的增量,記為:△x即:△x=x2-x1增量△x可正可負.我們再來看一個例子:函數(shù)在點x0的鄰域內(nèi)有定義,當自變量x在領(lǐng)域內(nèi)從x0變到x0+△x時,函數(shù)y相應(yīng)地從變到,其對應(yīng)的增量為:這個關(guān)系式的幾何解釋如下圖:現(xiàn)在我們可對連續(xù)性的概念這樣描述:如果當△x趨向于零時,函數(shù)y對應(yīng)的增量△y也趨向于零,即:,那末就稱函數(shù)在點x0處連續(xù)。函數(shù)連續(xù)性的定義:設(shè)函數(shù)在點x0的某個鄰域內(nèi)有定義,如果有稱函數(shù)在點x0處連續(xù),且稱x0為函數(shù)的的連續(xù)點.下面我們結(jié)合著函數(shù)左、右極限的概念再來學(xué)習(xí)一下函數(shù)左、右連續(xù)的概念:設(shè)函數(shù)在區(qū)間(a,b]內(nèi)有定義,如果左極限存在且等于,即:=,那末我們就稱函數(shù)在點b左連續(xù).設(shè)函數(shù)在區(qū)間[a,b)內(nèi)有定義,如果右極限存在且等于,即:=,那末我們就稱函數(shù)在點a右連續(xù).一個函數(shù)在開區(qū)間(a,b)內(nèi)每點連續(xù),則為在(a,b)連續(xù),若又在a點右連續(xù),b點左連續(xù),則在閉區(qū)間[a,b]連續(xù),如果在整個定義域內(nèi)連續(xù),則稱為連續(xù)函數(shù)。注:一個函數(shù)若在定義域內(nèi)某一點左、右都連續(xù),則稱函數(shù)在此點連續(xù),否則在此點不連續(xù).注:連續(xù)函數(shù)圖形是一條連續(xù)而不間斷的曲線。通過上面的學(xué)習(xí)我們已經(jīng)知道函數(shù)的連續(xù)性了,同時我們可以想到若函數(shù)在某一點要是不連續(xù)會出現(xiàn)什么情形呢?接著我們就來學(xué)習(xí)這個問題:函數(shù)的間斷點函數(shù)的間斷點定義:我們把不滿足函數(shù)連續(xù)性的點稱之為間斷點.

它包括三種情形:a):在x0無定義;b):在x→x0時無極限;c):在x→x0時有極限但不等于;下面我們通過例題來學(xué)習(xí)一下間斷點的類型:例1:正切函數(shù)在處沒有定義,所以點是函數(shù)的間斷點,因,我們就稱為函數(shù)的無窮間斷點;例2:函數(shù)在點x=0處沒有定義;故當x→0時,函數(shù)值在-1與+1之間變動無限多次,我們就稱點x=0叫做函數(shù)的振蕩間斷點;

例3:函數(shù)當x→0時,左極限,右極限,從這我們可以看出函數(shù)左、右極限雖然都存在,但不相等,故函數(shù)在點x=0是不存在極限。我們還可以發(fā)現(xiàn)在點x=0時,函數(shù)值產(chǎn)生跳躍現(xiàn)象,為此我們把這種間斷點稱為跳躍間斷點;我們把上述三種間斷點用幾何圖形表示出來如下:間斷點的分類我們通常把間斷點分成兩類:如果x0是函數(shù)的間斷點,且其左、右極限都存在,我們把x0稱為函數(shù)的第一類間斷點;不是第一類間斷點的任何間斷點,稱為第二類間斷點.可去間斷點若x0是函數(shù)的間斷點,但極限存在,那末x0是函數(shù)的第一類間斷點。此時函數(shù)不連續(xù)原因是:不存在或者是存在但≠。我們令,則可使函數(shù)在點x0處連續(xù),故這種間斷點x0稱為可去間斷點。連續(xù)函數(shù)的性質(zhì)與初等函數(shù)的連續(xù)性連續(xù)函數(shù)的性質(zhì)函數(shù)的和、積、商的連續(xù)性我們通過函數(shù)在某點連續(xù)的定義和極限的四則運算法則,可得出以下結(jié)論:a):有限個在某點連續(xù)的函數(shù)的和是一個在該點連續(xù)的函數(shù);b):有限個在某點連續(xù)的函數(shù)的乘積是一個在該點連續(xù)的函數(shù);c):兩個在某點連續(xù)的函數(shù)的商是一個在該點連續(xù)的函數(shù)(分母在該點不為零);反函數(shù)的連續(xù)性若函數(shù)在某區(qū)間上單調(diào)增(或單調(diào)減)且連續(xù),那末它的反函數(shù)也在對應(yīng)的區(qū)間上單調(diào)增(單調(diào)減)且連續(xù)例:函數(shù)在閉區(qū)間上單調(diào)增且連續(xù),故它的反函數(shù)在閉區(qū)間[-1,1]上也是單調(diào)增且連續(xù)的。復(fù)合函數(shù)的連續(xù)性設(shè)函數(shù)當x→x0時的極限存在且等于a,即:.而函數(shù)在點u=a連續(xù),那末復(fù)合函數(shù)當x→x0時的極限也存在且等于.即:例題:求解答:注:函數(shù)可看作與復(fù)合而成,且函數(shù)在點u=e連續(xù),因此可得出上述結(jié)論。設(shè)函數(shù)在點x=x0連續(xù),且,而函數(shù)在點u=u0連續(xù),那末復(fù)合函數(shù)在點x=x0也是連續(xù)的初等函數(shù)的連續(xù)性通過前面我們所學(xué)的概念和性質(zhì),我們可得出以下結(jié)論:基本初等函數(shù)在它們的定義域內(nèi)都是連續(xù)的;一切初等函數(shù)在其定義域內(nèi)也都是連續(xù)的.閉區(qū)間上連續(xù)函數(shù)的性質(zhì)閉區(qū)間上的連續(xù)函數(shù)則是在其連續(xù)區(qū)間的左端點右連續(xù),右端點左連續(xù).對于閉區(qū)間上的連續(xù)函數(shù)有幾條重要的性質(zhì),下面我們來學(xué)習(xí)一下:

最大值最小值定理:在閉區(qū)間上連續(xù)的函數(shù)一定有最大值和最小值。(在此不作證明)

例:函數(shù)y=sinx在閉區(qū)間[0,2π]上連續(xù),則在點x=π/2處,它的函數(shù)值為1,且大于閉區(qū)間[0,2π]上其它各點出的函數(shù)值;則在點x=3π/2處,它的函數(shù)值為-1,且小于閉區(qū)間[0,2π]上其它各點出的函數(shù)值。介值定理

在閉區(qū)間上連續(xù)的函數(shù)一定取得介于區(qū)間兩端點的函數(shù)值間的任何值。即:,μ在α、β之間,則在[a,b]間一定有一個ξ,使

推論:

在閉區(qū)間連續(xù)的函數(shù)必取得介于最大值最小值之間的任何值。二、導(dǎo)數(shù)與微分導(dǎo)數(shù)的概念在學(xué)習(xí)到數(shù)的概念之前,我們先來討論一下物理學(xué)中變速直線運動的瞬時速度的問題。例:設(shè)一質(zhì)點沿x軸運動時,其位置x是時間t的函數(shù),,求質(zhì)點在t0的瞬時速度?我們知道時間從t0有增量△t時,質(zhì)點的位置有增量,這就是質(zhì)點在時間段△t的位移。因此,在此段時間內(nèi)質(zhì)點的平均速度為:.若質(zhì)點是勻速運動的則這就是在t0的瞬時速度,若質(zhì)點是非勻速直線運動,則這還不是質(zhì)點在t0時的瞬時速度。我們認為當時間段△t無限地接近于0時,此平均速度會無限地接近于質(zhì)點t0時的瞬時速度,即:質(zhì)點在t0時的瞬時速度=為此就產(chǎn)生了導(dǎo)數(shù)的定義,如下:導(dǎo)數(shù)的定義:設(shè)函數(shù)在點x0的某一鄰域內(nèi)有定義,當自變量x在x0處有增量△x(x+△x也在該鄰域內(nèi))時,相應(yīng)地函數(shù)有增量,若△y與△x之比當△x→0時極限存在,則稱這個極限值為在x0處的導(dǎo)數(shù)。記為:還可記為:,函數(shù)在點x0處存在導(dǎo)數(shù)簡稱函數(shù)在點x0處可導(dǎo),否則不可導(dǎo)。若函數(shù)在區(qū)間(a,b)內(nèi)每一點都可導(dǎo),就稱函數(shù)在區(qū)間(a,b)內(nèi)可導(dǎo)。這時函數(shù)對于區(qū)間(a,b)內(nèi)的每一個確定的x值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),我們就稱這個函數(shù)為原來函數(shù)的導(dǎo)函數(shù)。

注:導(dǎo)數(shù)也就是差商的極限左、右導(dǎo)數(shù)前面我們有了左、右極限的概念,導(dǎo)數(shù)是差商的極限,因此我們可以給出左、右導(dǎo)數(shù)的概念。若極限存在,我們就稱它為函數(shù)在x=x0處的左導(dǎo)數(shù)。若極限存在,我們就稱它為函數(shù)在x=x0處的右導(dǎo)數(shù)。注:函數(shù)在x0處的左右導(dǎo)數(shù)存在且相等是函數(shù)在x0處的可導(dǎo)的充分必要條件函數(shù)的和、差求導(dǎo)法則函數(shù)的和差求導(dǎo)法則

法則:兩個可導(dǎo)函數(shù)的和(差)的導(dǎo)數(shù)等于這兩個函數(shù)的導(dǎo)數(shù)的和(差).用公式可寫為:。其中u、v為可導(dǎo)函數(shù)。例題:已知,求解答:例題:已知,求解答:函數(shù)的積商求導(dǎo)法則常數(shù)與函數(shù)的積的求導(dǎo)法則法則:在求一個常數(shù)與一個可導(dǎo)函數(shù)的乘積的導(dǎo)數(shù)時,常數(shù)因子可以提到求導(dǎo)記號外面去。用公式可寫成:例題:已知,求解答:函數(shù)的積的求導(dǎo)法則法則:兩個可導(dǎo)函數(shù)乘積的導(dǎo)數(shù)等于第一個因子的導(dǎo)數(shù)乘第二個因子,加上第一個因子乘第二個因子的導(dǎo)數(shù)。用公式可寫成:例題:已知,求解答:注:若是三個函數(shù)相乘,則先把其中的兩個看成一項。函數(shù)的商的求導(dǎo)法則法則:兩個可導(dǎo)函數(shù)之商的導(dǎo)數(shù)等于分子的導(dǎo)數(shù)與分母導(dǎo)數(shù)乘積減去分母導(dǎo)數(shù)與分子導(dǎo)數(shù)的乘積,在除以分母導(dǎo)數(shù)的平方。用公式可寫成:例題:已知,求解答:復(fù)合函數(shù)的求導(dǎo)法則在學(xué)習(xí)此法則之前我們先來看一個例子!例題:求=解答:由于,故

這個解答正確嗎這個解答是錯誤的,正確的解答應(yīng)該如下:我們發(fā)生錯誤的原因是是對自變量x求導(dǎo),而不是對2x求導(dǎo)。下面我們給出復(fù)合函數(shù)的求導(dǎo)法則復(fù)合函數(shù)的求導(dǎo)規(guī)則規(guī)則:兩個可導(dǎo)函數(shù)復(fù)合而成的復(fù)合函數(shù)的導(dǎo)數(shù)等于函數(shù)對中間變量的導(dǎo)數(shù)乘上中間變量對自變量的導(dǎo)數(shù)。用公式表示為:,其中u為中間變量例題:已知,求解答:設(shè),則可分解為,因此注:在以后解題中,我們可以中間步驟省去。例題:已知,求

解答:反函數(shù)求導(dǎo)法則根據(jù)反函數(shù)的定義,函數(shù)為單調(diào)連續(xù)函數(shù),則它的反函數(shù),它也是單調(diào)連續(xù)的.為此我們可給出反函數(shù)的求導(dǎo)法則,如下(我們以定理的形式給出):定理:若是單調(diào)連續(xù)的,且,則它的反函數(shù)在點x可導(dǎo),且有:注:通過此定理我們可以發(fā)現(xiàn):反函數(shù)的導(dǎo)數(shù)等于原函數(shù)導(dǎo)數(shù)的倒數(shù)。注:這里的反函數(shù)是以y為自變量的,我們沒有對它作記號變換。即:是對y求導(dǎo),是對x求導(dǎo)例題:求的導(dǎo)數(shù).解答:此函數(shù)的反函數(shù)為,故則:例題:求的導(dǎo)數(shù).解答:此函數(shù)的反函數(shù)為,故則:高階導(dǎo)數(shù)我們知道,在物理學(xué)上變速直線運動的速度v(t)是位置函數(shù)s(t)對時間t的導(dǎo)數(shù),即:,而加速度a又是速度v對時間t的變化率,即速度v對時間t的導(dǎo)數(shù):,或。這種導(dǎo)數(shù)的導(dǎo)數(shù)叫做s對t的二階導(dǎo)數(shù)。下面我們給出它的數(shù)學(xué)定義:定義:函數(shù)的導(dǎo)數(shù)仍然是x的函數(shù).我們把的導(dǎo)數(shù)叫做函數(shù)的二階導(dǎo)數(shù),記作或,即:或.相應(yīng)地,把的導(dǎo)數(shù)叫做函數(shù)的一階導(dǎo)數(shù).類似地,二階導(dǎo)數(shù)的導(dǎo)數(shù),叫做三階導(dǎo)數(shù),三階導(dǎo)數(shù)的導(dǎo)數(shù),叫做四階導(dǎo)數(shù),…,一般地(n-1)階導(dǎo)數(shù)的導(dǎo)數(shù)叫做n階導(dǎo)數(shù).分別記作:,,…,或,,…,二階與二階以上的導(dǎo)數(shù)統(tǒng)稱高階導(dǎo)數(shù)。由此可見,求高階導(dǎo)數(shù)就是多次接連地求導(dǎo),所以,在求高階導(dǎo)數(shù)時可運用前面所學(xué)的求導(dǎo)方法。例題:已知,求

解答:因為=a,故=0例題:求對數(shù)函數(shù)的n階導(dǎo)數(shù)。解答:,,,,一般地,可得隱函數(shù)與其求導(dǎo)法則我們知道用解析法表示函數(shù),可以有不同的形式.若函數(shù)y可以用含自變量x的算式表示,像y=sinx,y=1+3x等,這樣的函數(shù)叫顯函數(shù).前面我們所遇到的函數(shù)大多都是顯函數(shù).一般地,如果方程F(x,y)=0中,令x在某一區(qū)間內(nèi)任取一值時,相應(yīng)地總有滿足此方程的y值存在,則我們就說方程F(x,y)=0在該區(qū)間上確定了x的隱函數(shù)y.把一個隱函數(shù)化成顯函數(shù)的形式,叫做隱函數(shù)的顯化。注:有些隱函數(shù)并不是很容易化為顯函數(shù)的,則在求其導(dǎo)數(shù)時該如何呢?下面讓我們來解決這個問題!隱函數(shù)的求導(dǎo)若已知F(x,y)=0,求時,一般按下列步驟進行求解:a):若方程F(x,y)=0,能化為的形式,則用前面我們所學(xué)的方法進行求導(dǎo);b):若方程F(x,y)=0,不能化為的形式,則是方程兩邊對x進行求導(dǎo),并把y看成x的函數(shù),用復(fù)合函數(shù)求導(dǎo)法則進行。例題:已知,求解答:此方程不易顯化,故運用隱函數(shù)求導(dǎo)法.兩邊對x進行求導(dǎo),,,故=

注:我們對隱函數(shù)兩邊對x進行求導(dǎo)時,一定要把變量y看成x的函數(shù),然后對其利用復(fù)合函數(shù)求導(dǎo)法則進行求導(dǎo)。例題:求隱函數(shù),在x=0處的導(dǎo)數(shù)解答:兩邊對x求導(dǎo),故,當x=0時,y=0.故。有些函數(shù)在求導(dǎo)數(shù)時,若對其直接求導(dǎo)有時很不方便,像對某些冪函數(shù)進行求導(dǎo)時,有沒有一種比較直觀的方法呢?下面我們再來學(xué)習(xí)一種求導(dǎo)的方法:對數(shù)求導(dǎo)法對數(shù)求導(dǎo)法對數(shù)求導(dǎo)的法則:根據(jù)隱函數(shù)求導(dǎo)的方法,對某一函數(shù)先取函數(shù)的自然對數(shù),然后在求導(dǎo)。注:此方法特別適用于冪函數(shù)的求導(dǎo)問題。例題:已知x>0,求此題若對其直接求導(dǎo)比較麻煩,我們可以先對其兩邊取自然對數(shù),然后再把它看成隱函數(shù)進行求導(dǎo),就比較簡便些。如下解答:先兩邊取對數(shù):,把其看成隱函數(shù),再兩邊求導(dǎo)因為,所以例題:已知,求此題可用復(fù)合函數(shù)求導(dǎo)法則進行求導(dǎo),但是比較麻煩,下面我們利用對數(shù)求導(dǎo)法進行求導(dǎo)解答:先兩邊取對數(shù)再兩邊求導(dǎo)因為,所以函數(shù)的微分學(xué)習(xí)函數(shù)的微分之前,我們先來分析一個具體問題:一塊正方形金屬薄片受溫度變化的影響時,其邊長由x0變到了x0+△x,則此薄片的面積改變了多少?解答:設(shè)此薄片的邊長為x,面積為A,則A是x的函數(shù):薄片受溫度變化的影響面積的改變量,可以看成是當自變量x從x0取的增量△x時,函數(shù)A相應(yīng)的增量△A,即:。從上式我們可以看出,△A分成兩部分,第一部分是△x的線性函數(shù),即下圖中紅色部分;第二部分即圖中的黑色部分,當△x→0時,它是△x的高階無窮小,表示為:由此我們可以發(fā)現(xiàn),如果邊長變化的很小時,面積的改變量可以近似的用地一部分來代替。下面我們給出微分的數(shù)學(xué)定義:函數(shù)微分的定義:設(shè)函數(shù)在某區(qū)間內(nèi)有定義,x0與x0+△x在這區(qū)間內(nèi),若函數(shù)的增量可表示為,其中A是不依賴于△x的常數(shù),是△x的高階無窮小,則稱函數(shù)在點x0可微的。叫做函數(shù)在點x0相應(yīng)于自變量增量△x的微分,記作dy,即:=。通過上面的學(xué)習(xí)我們知道:微分是自變量改變量△x的線性函數(shù),dy與△y的差是關(guān)于△x的高階無窮小量,我們把dy稱作△y的線性主部。于是我們又得出:當△x→0時,△y≈dy.導(dǎo)數(shù)的記號為:,現(xiàn)在我們可以發(fā)現(xiàn),它不僅表示導(dǎo)數(shù)的記號,而且還可以表示兩個微分的比值(把△x看成dx,即:定義自變量的增量等于自變量的微分),還可表示為:由此我們得出:若函數(shù)在某區(qū)間上可導(dǎo),則它在此區(qū)間上一定可微,反之亦成立。微分形式不變性

什么是微分形式不邊形呢?

設(shè),則復(fù)合函數(shù)的微分為:

,

由于,故我們可以把復(fù)合函數(shù)的微分寫成

由此可見,不論u是自變量還是中間變量,的微分dy總可以用與du的乘積來表示,

我們把這一性質(zhì)稱為微分形式不變性。

例題:已知,求dy

解答:把2x+1看成中間變量u,根據(jù)微分形式不變性,則

通過上面的學(xué)習(xí),我們知道微分與導(dǎo)數(shù)有著不可分割的聯(lián)系,前面我們知道基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)

的運算法則,則基本初等函數(shù)的微分公式和微分運算法則是怎樣的呢?

下面我們來學(xué)習(xí)———基本初等函數(shù)的微分公式與微分的運算法則基本初等函數(shù)的微分公式與微分的運算法則基本初等函數(shù)的微分公式

由于函數(shù)微分的表達式為:,于是我們通過基本初等函數(shù)導(dǎo)數(shù)的公式可得出基本初等函數(shù)微分的公式,下面我們用表格來把基本初等函數(shù)的導(dǎo)數(shù)公式與微分公式對比一下:(部分公式)導(dǎo)數(shù)公式微分公式微分運算法則

由函數(shù)和、差、積、商的求導(dǎo)法則,可推出相應(yīng)的微分法則.為了便于理解,下面我們用表格來把微分的運算法則與導(dǎo)數(shù)的運算法則對照一下:函數(shù)和、差、積、商的求導(dǎo)法則函數(shù)和、差、積、商的微分法則

復(fù)合函數(shù)的微分法則就是前面我們學(xué)到的微分形式不變性,在此不再詳述。

例題:設(shè),求對x3的導(dǎo)數(shù)

解答:根據(jù)微分形式的不變性

微分的應(yīng)用

微分是表示函數(shù)增量的線性主部.計算函數(shù)的增量,有時比較困難,但計算微分則比較簡單,為此我們用函數(shù)的微分來近似的代替函數(shù)的增量,這就是微分在近似計算中的應(yīng)用.

例題:求的近似值。

解答:我們發(fā)現(xiàn)用計算的方法特別麻煩,為此把轉(zhuǎn)化為求微分的問題

故其近似值為1.025(精確值為1.024695)三、導(dǎo)數(shù)的應(yīng)用微分學(xué)中值定理

在給出微分學(xué)中值定理的數(shù)學(xué)定義之前,我們先從幾何的角度看一個問題,如下:

設(shè)有連續(xù)函數(shù),a與b是它定義區(qū)間內(nèi)的兩點(a<b),假定此函數(shù)在(a,b)處處可導(dǎo),也就是在(a,b)內(nèi)的函數(shù)圖形上處處都由切線,那末我們從圖形上容易直到,

差商就是割線AB的斜率,若我們把割線AB作平行于自身的移動,則至少有一次機會達到離割線最遠的一點P(x=c)處成為曲線的切線,而曲線的斜率為,由于切線與割線是平行的,因此

成立。

注:這個結(jié)果就稱為微分學(xué)中值定理,也稱為拉格朗日中值定理拉格朗日中值定理

如果函數(shù)在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),那末在(a,b)內(nèi)至少有一點c,使

成立。

這個定理的特殊情形,即:的情形,稱為羅爾定理。描述如下:

若在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),且,那末在(a,b)內(nèi)至少有一點c,使成立。

注:這個定理是羅爾在17世紀初,在微積分發(fā)明之前以幾何的形式提出來的。

注:在此我們對這兩個定理不加以證明,若有什么疑問,請參考相關(guān)書籍

下面我們在學(xué)習(xí)一條通過拉格朗日中值定理推廣得來的定理——柯西中值定理柯西中值定理

如果函數(shù),在閉區(qū)間[a,b]上連續(xù),在開區(qū)間(a,b)內(nèi)可導(dǎo),且≠0,那末在(a,b)內(nèi)至少有一點c,使成立。

例題:證明方程在0與1之間至少有一個實根

證明:不難發(fā)現(xiàn)方程左端是函數(shù)的導(dǎo)數(shù):

函數(shù)在[0,1]上連續(xù),在(0,1)內(nèi)可導(dǎo),且,由羅爾定理

可知,在0與1之間至少有一點c,使,即

也就是:方程在0與1之間至少有一個實根未定式問題

問題:什么樣的式子稱作未定式呢?

答案:對于函數(shù),來說,當x→a(或x→∞)時,函數(shù),都趨于零或無窮大

則極限可能存在,也可能不存在,我們就把式子稱為未定式。分別記為型

我們?nèi)菀字?,對于未定式的極限求法,是不能應(yīng)用"商的極限等于極限的商"這個法則來求解的,則我們該如何求這類問題的極限呢?

下面我們來學(xué)習(xí)羅彼塔(L'Hospital)法則,它就是這個問題的答案

注:它是根據(jù)柯西中值定理推出來的。羅彼塔(L'Hospital)法則

當x→a(或x→∞)時,函數(shù),都趨于零或無窮大,在點a的某個去心鄰域內(nèi)(或當│x│>N)時,與都存在,≠0,且存在

則:=

這種通過分子分母求導(dǎo)再來求極限來確定未定式的方法,就是所謂的羅彼塔(L'Hospital)法則

注:它是以前求極限的法則的補充,以前利用法則不好求的極限,可利用此法則求解。

例題:求

解答:容易看出此題利用以前所學(xué)的法則是不易求解的,因為它是未定式中的型求解問題,因此我們就可以利用上面所學(xué)的法則了。

例題:求

解答:此題為未定式中的型求解問題,利用羅彼塔法則來求解

另外,若遇到、、、、等型,通常是轉(zhuǎn)化為型后,在利用法則求解。

例題:求

解答:此題利用以前所學(xué)的法則是不好求解的,它為型,故可先將其轉(zhuǎn)化為型后在求解,

注:羅彼塔法則只是說明:對未定式來說,當存在,則存在且二者的極限相同;而并不是不存在時,也不存在,此時只是說明了羅彼塔法則存在的條件破列。函數(shù)單調(diào)性的判定法

函數(shù)的單調(diào)性也就是函數(shù)的增減性,怎樣才能判斷函數(shù)的增減性呢?

我們知道若函數(shù)在某區(qū)間上單調(diào)增(或減),則在此區(qū)間內(nèi)函數(shù)圖形上切線的斜率均為正(或負),也就是函數(shù)的導(dǎo)數(shù)在此區(qū)間上均取正值(或負值).因此我們可通過判定函數(shù)導(dǎo)數(shù)的正負來判定函數(shù)的增減性.判定方法:

設(shè)函數(shù)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo).

a):如果在(a,b)內(nèi)>0,那末函數(shù)在[a,b]上單調(diào)增加;

b):如果在(a,b)內(nèi)<0,那末函數(shù)在[a,b]上單調(diào)減少.

例題:確定函數(shù)的增減區(qū)間.

解答:容易確定此函數(shù)的定義域為(-∞,+∞)

其導(dǎo)數(shù)為:,因此可以判出:

當x>0時,>0,故它的單調(diào)增區(qū)間為(0,+∞);

當x<0時,<0,故它的單調(diào)減區(qū)間為(-∞,0);

注:此判定方法若反過來講,則是不正確的。函數(shù)的極值與其求法

在學(xué)習(xí)函數(shù)的極值之前,我們先來看一例子:

設(shè)有函數(shù),容易知道點x=1與x=2是此函數(shù)單調(diào)區(qū)間的分界點,又可知在點x=1左側(cè)附近,函數(shù)值是單調(diào)增加的,在點x=1右側(cè)附近,函數(shù)值是單調(diào)減小的.因此存在著點x=1的一個鄰域,對于這個鄰域內(nèi),任何點x(x=1除外),<均成立,點x=2也有類似的情況(在此不多說),為什么這些點有這些性質(zhì)呢?

事實上,這就是我們將要學(xué)習(xí)的內(nèi)容——函數(shù)的極值,函數(shù)極值的定義

設(shè)函數(shù)在區(qū)間(a,b)內(nèi)有定義,x0是(a,b)內(nèi)一點.

若存在著x0點的一個鄰域,對于這個鄰域內(nèi)任何點x(x0點除外),<均成立,

則說是函數(shù)的一個極大值;

若存在著x0點的一個鄰域,對于這個鄰域內(nèi)任何點x(x0點除外),>均成立,

則說是函數(shù)的一個極小值.

函數(shù)的極大值與極小值統(tǒng)稱為函數(shù)的極值,使函數(shù)取得極值的點稱為極值點。

我們知道了函數(shù)極值的定義了,怎樣求函數(shù)的極值呢?

學(xué)習(xí)這個問題之前,我們再來學(xué)習(xí)一個概念——駐點

凡是使的x點,稱為函數(shù)的駐點。

判斷極值點存在的方法有兩種:如下方法一:

設(shè)函數(shù)在x0點的鄰域可導(dǎo),且.

情況一:若當x取x0左側(cè)鄰近值時,>0,當x取x0右側(cè)鄰近值時,<0,

則函數(shù)在x0點取極大值。

情況一:若當x取x0左側(cè)鄰近值時,<0,當x取x0右側(cè)鄰近值時,>0,

則函數(shù)在x0點取極小值。

注:此判定方法也適用于導(dǎo)數(shù)在x0點不存在的情況。

用方法一求極值的一般步驟是:

a):求;

b):求的全部的解——駐點;

c):判斷在駐點兩側(cè)的變化規(guī)律,即可判斷出函數(shù)的極值。

例題:求極值點

解答:先求導(dǎo)數(shù)

再求出駐點:當時,x=-2、1、-4/5

判定函數(shù)的極值,如下圖所示

方法二:

設(shè)函數(shù)在x0點具有二階導(dǎo)數(shù),且時.

則:a):當<0,函數(shù)在x0點取極大值;

b):當>0,函數(shù)在x0點取極小值;

c):當=0,其情形不一定,可由方法一來判定.

例題:我們?nèi)砸岳?為例,以比較這兩種方法的區(qū)別。

解答:上面我們已求出了此函數(shù)的駐點,下面我們再來求它的二階導(dǎo)數(shù)。

,故此時的情形不確定,我們可由方法一來判定;

<0,故此點為極大值點;

>0,故此點為極小值點。函數(shù)的最大值、最小值與其應(yīng)用

在工農(nóng)業(yè)生產(chǎn)、工程技術(shù)與科學(xué)實驗中,常會遇到這樣一類問題:在一定條件下,怎樣使"產(chǎn)品最多"、"用料最省"、"成本最低"等。

這類問題在數(shù)學(xué)上可歸結(jié)為求某一函數(shù)的最大值、最小值的問題。

怎樣求函數(shù)的最大值、最小值呢?前面我們已經(jīng)知道了,函數(shù)的極值是局部的。要求在[a,b]上的最大值、最小值時,可求出開區(qū)間(a,b)內(nèi)全部的極值點,加上端點的值,從中取得最大值、最小值即為所求。

例題:求函數(shù),在區(qū)間[-3,3/2]的最大值、最小值。

解答:在此區(qū)間處處可導(dǎo),

先來求函數(shù)的極值,故x=±1,

再來比較端點與極值點的函數(shù)值,取出最大值與最小值即為所求。

因為,,,

故函數(shù)的最大值為,函數(shù)的最小值為。

例題:圓柱形罐頭,高度H與半徑R應(yīng)怎樣配,使同樣容積下材料最?。?/p>

解答:由題意可知:為一常數(shù),

面積

故在V不變的條件下,改變R使S取最小值。

故:時,用料最省。曲線的凹向與拐點

通過前面的學(xué)習(xí),我們知道由一階導(dǎo)數(shù)的正負,可以判定出函數(shù)的單調(diào)區(qū)間與極值,但是還不能進一步研究曲線的性態(tài),為此我們還要了解曲線的凹性。

定義:

對區(qū)間I的曲線作切線,如果曲線弧在所有切線的下面,則稱曲線在區(qū)間I下凹,如果曲線在切線的上面,稱曲線在區(qū)間I上凹。曲線凹向的判定定理

定理一:設(shè)函數(shù)在區(qū)間(a,b)上可導(dǎo),它對應(yīng)曲線是向上凹(或向下凹)的充分必要條件是:

導(dǎo)數(shù)在區(qū)間(a,b)上是單調(diào)增(或單調(diào)減)。

定理二:設(shè)函數(shù)在區(qū)間(a,b)上可導(dǎo),并且具有一階導(dǎo)數(shù)和二階導(dǎo)數(shù);那末:

若在(a,b)內(nèi),>0,則在[a,b]對應(yīng)的曲線是下凹的;

若在(a,b)內(nèi),<0,則在[a,b]對應(yīng)的曲線是上凹的;

例題:判斷函數(shù)的凹向

解答:我們根據(jù)定理二來判定。

因為,所以在函數(shù)的定義域(0,+∞)內(nèi),<0,

故函數(shù)所對應(yīng)的曲線時下凹的。拐點的定義

連續(xù)函數(shù)上,上凹弧與下凹弧的分界點稱為此曲線上的拐點。拐定的判定方法

如果在區(qū)間(a,b)內(nèi)具有二階導(dǎo)數(shù),我們可按下列步驟來判定的拐點。

(1):求;

(2):令=0,解出此方程在區(qū)間(a,b)內(nèi)實根;

(3):對于(2)中解出的每一個實根x0,檢查在x0左、右兩側(cè)鄰近的符號,若符號相反,則此點是拐點,若相同,則不是拐點。

例題:求曲線的拐點。

解答:由,

令=0,得x=0,2/3

判斷在0,2/3左、右兩側(cè)鄰近的符號,可知此兩點皆是曲線的拐點。四、不定積分不定積分的概念原函數(shù)的概念

已知函數(shù)f(x)是一個定義在某區(qū)間的函數(shù),如果存在函數(shù)F(x),使得在該區(qū)間內(nèi)的任一點都有

dF'(x)=f(x)dx,

則在該區(qū)間內(nèi)就稱函數(shù)F(x)為函數(shù)f(x)的原函數(shù)。

例:sinx是cosx的原函數(shù)。

關(guān)于原函數(shù)的問題

函數(shù)f(x)滿足什么條件是,才保證其原函數(shù)一定存在呢?這個問題我們以后來解決。若其存在原函數(shù),那末原函數(shù)一共有多少個呢?

我們可以明顯的看出來:若函數(shù)F(x)為函數(shù)f(x)的原函數(shù),

即:F"(x)=f(x),

則函數(shù)族F(x)+C(C為任一個常數(shù))中的任一個函數(shù)一定是f(x)的原函數(shù),

故:若函數(shù)f(x)有原函數(shù),那末其原函數(shù)為無窮多個.

不定積分的概念

函數(shù)f(x)的全體原函數(shù)叫做函數(shù)f(x)的不定積分,

記作。

由上面的定義我們可以知道:如果函數(shù)F(x)為函數(shù)f(x)的一個原函數(shù),那末f(x)的不定積分就是函數(shù)族

F(x)+C.

即:=F(x)+C

例題:求:.

解答:由于,故=

不定積分的性質(zhì)

1、函數(shù)的和的不定積分等于各個函數(shù)的不定積分的和;

即:

2、求不定積分時,被積函數(shù)中不為零的常數(shù)因子可以提到積分號外面來,

即:求不定積分的方法換元法

換元法(一):設(shè)f(u)具有原函數(shù)F(u),u=g(x)可導(dǎo),那末F[g(x)]是f[g(x)]g'(x)的原函數(shù).

即有換元公式:

例題:求

解答:這個積分在基本積分表中是查不到的,故我們要利用換元法。

設(shè)u=2x,那末cos2x=cosu,du=2dx,因此:

換元法(二):設(shè)x=g(t)是單調(diào)的,可導(dǎo)的函數(shù),并且g'(t)≠0,又設(shè)f[g(t)]g'(t)具有原函數(shù)φ(t),

則φ[g(x)]是f(x)的原函數(shù).(其中g(shù)(x)是x=g(t)的反函數(shù))

即有換元公式:

例題:求

解答:這個積分的困難在于有根式,但是我們可以利用三角公式來換元.

設(shè)x=asint(-π/2<t<π/2),那末,dx=acostdt,于是有:

關(guān)于換元法的問題

不定積分的換元法是在復(fù)合函數(shù)求導(dǎo)法則的基礎(chǔ)上得來的,我們應(yīng)根據(jù)具體實例來選擇所用的方法,求不定積分不象求導(dǎo)那樣有規(guī)則可依,因此要想熟練的求出某函數(shù)的不定積分,只有作大量的練習(xí)。

分部積分法

這種方法是利用兩個函數(shù)乘積的求導(dǎo)法則得來的。

設(shè)函數(shù)u=u(x)與v=v(x)具有連續(xù)導(dǎo)數(shù).我們知道,兩個函數(shù)乘積的求導(dǎo)公式為:

(uv)'=u'v+uv',移項,得

uv'=(uv)'-u'v,對其兩邊求不定積分得:

,

這就是分部積分公式

例題:求

解答:這個積分用換元法不易得出結(jié)果,我們來利用分部積分法。

設(shè)u=x,dv=cosxdx,那末du=dx,v=sinx,代入分部積分公式得:

關(guān)于分部積分法的問題

在使用分部積分法時,應(yīng)恰當?shù)倪x取u和dv,否則就會南轅北轍。選取u和dv一般要考慮兩點:

(1)v要容易求得;

(2)容易積出。幾種特殊類型函數(shù)的積分舉例有理函數(shù)的積分舉例

有理函數(shù)是指兩個多項式的商所表示的函數(shù),當分子的最高項的次數(shù)大于分母最高項的次數(shù)時稱之為假分式,

反之為真分式。

在求有理函數(shù)的不定積分時,若有理函數(shù)為假分式應(yīng)先利用多項式的除法,把一個假分式化成一個多項式和一個真分式之和的形式,然后再求之。

例題:求

解答:

關(guān)于有理函數(shù)積分的問題

有理函數(shù)積分的具體方法請大家參照有關(guān)書籍,請諒。

三角函數(shù)的有理式的積分舉例

三角函數(shù)的有理式是指由三角函數(shù)和常數(shù)經(jīng)過有限次四則運算所構(gòu)成的函數(shù)。

例題:求

解答:

關(guān)于三角函數(shù)的有理式的積分的問題

任何三角函數(shù)都可用正弦與余弦函數(shù)表出,故變量代換u=tan(x/2)對三角函數(shù)的有理式的積分應(yīng)用,在此我

們不再舉例。

簡單無理函數(shù)的積分舉例

例題:求

解答:設(shè),于是x=u2+1,dx=2udu,從而所求積分為:

五、定積分與其應(yīng)用定積分的概念

我們先來看一個實際問題———求曲邊梯形的面積。

設(shè)曲邊梯形是有連續(xù)曲線y=f(x)、x軸與直線x=a、x=b所圍成。如下圖所示:

現(xiàn)在計算它的面積A.我們知道矩形面積的求法,但是此圖形有一邊是一條曲線,該如何求呢?

我們知道曲邊梯形在底邊上各點處的高f(x)在區(qū)間[a,b]上變動,而且它的高是連續(xù)變化的,因此在很小的一段區(qū)間的變化很小,近似于不變,并且當區(qū)間的長度無限縮小時,高的變化也無限減小。因此,如果把區(qū)間[a,b]分成許多小區(qū)間,在每個小區(qū)間上,用其中某一點的高來近似代替同一個小區(qū)間上的窄曲變梯形的變高,我們再根據(jù)矩形的面積公式,即可求出相應(yīng)窄曲邊梯形面積的近似值,從而求出整個曲邊梯形的近似值。

顯然:把區(qū)間[a,b]分的越細,所求出的面積值越接近于精確值。為此我們產(chǎn)生了定積分的概念。

定積分的概念

設(shè)函數(shù)f(x)在[a,b]上有界,在[a,b]中任意插入若干個分點

a=x0<x1<...<xn-1<xn=b

把區(qū)間[a,b]分成n個小區(qū)間

[x0,x1],...[xn-1,xn],

在每個小區(qū)間[xi-1,xi]上任取一點ξi(xi-1≤ξi≤xi),作函數(shù)值f(ξi)與小區(qū)間長度的乘積f(ξi)△xi,

并作出和,

如果不論對[a,b]怎樣分法,也不論在小區(qū)間上的點ξi怎樣取法,只要當區(qū)間的長度趨于零時,和S總趨于確定的極限I,

這時我們稱這個極限I為函數(shù)f(x)在區(qū)間[a,b]上的定積分,

記作。

即:

關(guān)于定積分的問題

我們有了定積分的概念了,則函數(shù)f(x)滿足什么條件時才可積?

定理(1):設(shè)f(x)在區(qū)間[a,b]上連續(xù),則f(x)在區(qū)間[a,b]上可積。

(2):設(shè)f(x)在區(qū)間[a,b]上有界,且只有有限個間斷點,則f(x)在區(qū)間[a,b]上可積。

定積分的性質(zhì)

性質(zhì)(1):函數(shù)的和(差)得定積分等于它們的定積分的和(差).

即:

性質(zhì)(2):被積函數(shù)的常數(shù)因子可以提到積分號外面.

即:

性質(zhì)(3):如果在區(qū)間[a,b]上,f(x)≤g(x),則≤

(a<b)

性質(zhì)(4):設(shè)M與m分別是函數(shù)f(x)在區(qū)間[a,b]上的最大值與最小值,則m(b-a)≤≤M(b-a)

性質(zhì)(5):如果f(x)在區(qū)間[a,b]上連續(xù),則在積分區(qū)間[a,b]上至少存在一點ξ,使下式成立:

=f(ξ)(b-a)

注:此性質(zhì)就是定積分中值定理。微積分積分公式積分上限的函數(shù)與其導(dǎo)數(shù)

設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設(shè)x為[a,b]上的一點.現(xiàn)在我們來考察f(x)在部分區(qū)間[a,x]上的定積分,我們知道f(x)在[a,x]上仍舊連續(xù),因此此定積分存在。

如果上限x在區(qū)間[a,b]上任意變動,則對于每一個取定的x值,定積分有一個對應(yīng)值,所以它在[a,b]上定義了一個函數(shù),記作φ(x):

注意:為了明確起見,我們改換了積分變量(定積分與積分變量的記法無關(guān))

定理(1):如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),則積分上限的函數(shù)在[a,b]上具有導(dǎo)數(shù),

并且它的導(dǎo)數(shù)是

(a≤x≤b)

(2):如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),則函數(shù)就是f(x)在[a,b]上的一個原函數(shù)。

注意:定理(2)即一定了連續(xù)函數(shù)的原函數(shù)是存在的,又初步揭示了積分學(xué)中的定積分與原函數(shù)之間的聯(lián)系。牛頓--萊布尼茲公式

定理(3):如果函數(shù)F(x)是連續(xù)函數(shù)f(x)在區(qū)間[a,b]上的一個原函數(shù),則

注意:此公式被稱為牛頓-萊布尼茲公式,它進一步揭示了定積分與原函數(shù)(不定積分)之間的聯(lián)系。

它表明:一個連續(xù)函數(shù)在區(qū)間[a,b]上的定積分等于它的任一個原函數(shù)再去見[a,b]上的增量。因此它就

給定積分提供了一個有效而簡便的計算方法。

例題:求

解答:我們由牛頓-萊布尼茲公式得:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論