




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
molecules
Review
ChemistryofPeptide-OligonucleotideConjugates:AReview
KristinaKlabenkova1,2,AlesyaFokina1,2,*andDmitryStetsenko
1,2o
checkfor
updates
Citation:Klabenkova,K.;Fokina,A.;Stetsenko,D.Chemistryof
Peptide-OligonucleotideConjugates:AReview.Molecules2021,26,5420.
/10.3390/
molecules26175420
AcademicEditors:HarriL?nnbergandRogerStr?mberg
Received:22July2021
Accepted:1September2021
Published:6September2021
Publisher’sNote:MDPIstaysneutralwithregardtojurisdictionalclaimsinpublishedmapsandinstitutionalaf?l-iations.
Copyright:?2021bytheauthors.LicenseeMDPI,Basel,Switzerland.ThisarticleisanopenaccessarticledistributedunderthetermsandconditionsoftheCreativeCommons
Attribution(CCBY)license(https://
/licenses/by/
4.0/).
1FacultyofPhysics,NovosibirskStateUniversity,630090Novosibirsk,Russia;k.klabenkova@g.nsu.ru(K.K.);d.stetsenko@nsu.ru(D.S.)
2InstituteofCytologyandGenetics,RussianAcademyofSciences,SiberianBranch,
630090Novosibirsk,Russia
*Correspondence:a.fokina@nsu.ru;Tel.:+7-383-363-4963
Abstract:Peptide-oligonucleotideconjugates(POCs)representoneoftheincreasinglysuccessfulalbeitcostlyapproachestoincreasingthecellularuptake,tissuedelivery,bioavailability,and,thus,overallef?ciencyoftherapeuticnucleicacids,suchas,antisenseoligonucleotidesandsmallinter-feringRNAs.ThisreviewputsthesubjectofchemicalsynthesisofPOCsintothewidercontextoftherapeuticoligonucleotidesandtheproblemofnucleicaciddrugdelivery,cell-penetratingpep-tidestructuraltypes,themechanismsoftheirintracellulartransport,andthewaysofapplication,whichincludetheformationofnon-covalentcomplexeswitholigonucleotides(peptideadditives)orcovalentconjugation.ThemainstrategiesforthesynthesisofPOCsareviewedindetail,which
areconceptuallydividedinto(a)thestepwisesolid-phasesynthesisapproachand(b)post-syntheticconjugationeitherinsolutionoronthesolidphase,especiallybymeansofvariousclickchemistries.Therelativeadvantagesanddisadvantagesofbothstrategiesarediscussedandcompared.
Keywords:cell-penetratingpeptide;nucleicacidtherapeutic;antisenseoligonucleotide;smallinterferingRNA(siRNA);peptidenucleicacid(PNA);lockednucleicacid(LNA);phosphordiamidatemorpholinooligomer(PMO);cellularuptake;drugdelivery;clickchemistry
1.Introduction
Thepeptide-oligonucleotideconjugate(POC)isanameusuallyappliedtoasyntheticmoleculeconstitutingoneormoreresiduesofalinearor,lessoften,acyclicpeptidelinkedbyacovalentbondtoanoligonucleotideoritsanalog.Aschimericcompoundsthatincludean(oligo)peptidepartandanucleicacidpart,eachpeptide-oligonucleotideconjugate(POC)representsacombinationofitsparentbiomolecules,suchastheimmanentbase-pairingabilityofnucleicacidsandthemultifacetedbioactivityofthestructurallyandfunctionallydiversepeptides.AlthoughthecompoundsrelatedtoPOCsoccurinnatureasnucleopeptides[
1
–
3
],thisreview,asitisfocusedonthechemicalmethodsofconjugatingpeptidestooligonucleotides,willbenecessarilylimitedtosyntheticsubstancesonly.
Theinterestinpeptide-oligonucleotideconjugateswassparkedbytheadventofantisensetechnology[
4
],followedbythedevelopmentofthe?rstgenerationoftherapeuticoligonucleotidesattheendofthe1980s[
5,
6]
.Afteraperiodofresearch,itwasgenerallyacceptedthatasuccessfulnucleicaciddrugoughttodemonstratebettercellularuptakethanwhatthemajorityoftheexploredto-dateoligonucleotidechemistriescanoffer[
7,
8]
.Thisunderstandingcoincidedwiththeserendipitousdiscoveryofwhatwaslatertobecalledcell-penetratingpeptidesinthemid-1990s[
9]
.
Clinicalapplicationoftherapeuticoligonucleotidesof?ciallystartedin1998,whentheUSFoodandDrugAdministration(FDA)approvedthe?rstnucleicaciddrugfomivirsen(Vitravene?)[
10
]forthetreatmentofcytomegalovirus-inducedblindingretinitisinAIDSpatients[
11]
.AftertheseminalworkonRNAinterference(RNAi)[
12
],ittookover20yearsforthe?rstsmallinterferingRNA(siRNA)therapeuticpatisiran(Onpattro?)toappear[
13]
.Todate,theprogressinnon-clinicalandclinicalstudieswithsyntheticoligonucleotides
Molecules2021,26,5420.
/10.3390/molecules26175420
/journal/molecules
Molecules2021,26,54203of36
haveacommonfeatureinthemechanismsoftheiraction,whichiscomplementarybasepairing[
68]
.
2.1.AntisenseOligonucleotides(ASOs)
Historically,antisenseoligonucleotides(ASOs)weretheearliestand,currently,thebest-studiedclassofnucleicacidtherapeutics.TheconceptofASOsoriginatedin1978,whenZamecnikandStephensondemonstratedthataspeci?c13-meroligodeoxynucleotideinhibitedRoussarcomavirusreplicationinchickenembryos[
4]
.ThemechanismofthetherapeuticeffectofASOsrestsontheabilityofsyntheticoligonucleotidesortheiranaloguestobindtoacomplementaryRNAthroughthecanonicalWatson–CrickduplextoalterthemetabolismofthecorrespondingRNAinoneofthefollowingways(Figure
1)
.
Figure1.Theaspectsoftheantisensemechanism.
AmoregeneralwayforASOstointerferewithRNAfunction,e.g.,theinitiationorelongationoftranslationofanmRNA,istophysicallyshieldaspeci?cfragmentofaregulatoryregionoftheRNA,e.g.,thetranslationinitiationsite,byformingaduplexwithASOs(stericblock)[
69
–
72]
.ThisapproachisparticularlyapplicablewhenoneneedstopreservethefunctionalRNA,e.g.,inthecaseofsplicingredirectionofapre-mRNAbyasplice-switchingoligonucleotide[
73
–
75]
.AnotherwayistoactivateenzymaticRNAdigestionbyrecruitingacellularRNase,mostcommonlyRNaseH[
76
],tohydrolyzetheRNAstrandoftheASO-RNAduplex[
77]
.
The?rstASOstobeinvestigatedwerenativeoligodeoxynucleotides(Figure
2,
1a)thatprovedtoberapidlydigestedbynucleasesintheserumunlessprotectedbyatleastminimalchemicalmodi?cation[
78,
79]
.Thus,unmodi?edoligonucleotidesprovedtobeunsuitableforinvivoapplications.Forthisreason,arangeofchemicalmodi?cationswereintroducedintoASOstorendertheprospectiveoligonucleotidetherapeuticssuf-?cientlyresistanttoenzymatichydrolysisoftheinternucleotidicphosphodiesterbond(Figure
2)[
80]
.Therefore,the?rst-generationASOsmaybesaidtoincorporatethemodi-?edphosphatelinkages,suchasphosphorothioate(1b)[
81
],methylphosphonate(1c)[
82
],morerarelyphosphorodithioate(1d)[
83
]andboranophosphate(1e)[
84
],andrecentlyreportedmesylphosphoramidate(1g)[
85,
86
],aswellasmanyothers[
87,
88]
.AnothergroupofASOsconsistsofoligonucleotideswithmodi?cationsintheriboseringthatnotonlyofferavaryingdegreeofprotectionagainstnucleasesbut,evenmoreimportantly,increasethestabilityoftheASO-RNAduplex[
89
–
91
],notably2,-O-methyl(2b)[
92
–
94
],2,-O-(2-methoxy)ethyl(MOE)(2c)[
95,
96
],2,-deoxy-2,-α-?uoro(4)[
97
],and,especially,con-
Molecules2021,26,54204of36
strainedriboseanaloguessuchasbridged/lockednucleicacids(B/LNAs)(3)[
98
–
101
]andtricyclo-DNAs(5)[
102]
.AseparateclassofASOsencompassesoligonucleotideanalogs,inwhichthenaturalribose-phosphatebackboneisreplacedbyasuitablesurrogate;typ-icalexampleswouldbepeptidenucleicacids(PNAs)(6)[
103
]andphosphordiamidatemorpholinooligomers(PMOs)(7)[
104,
105]
.Thelatter,inparticular,gaverisetothethreesplice-switchingoligonucleotidedrugsforthetreatmentofDuchennemusculardystrophyapprovedbytheFDAin2016-2021:eteplirsen(Exondys51?)[
106
],golodirsen(Vyondys53?)[
107
],andcasimersen(Amondys45?)[
108]
.
Figure2.Oligonucleotidesandtheiranalogs:(1a)nativeDNA,(1b)phosphorothioate,(1c)methylphosphonate,(1d)phosphorodithioate,(1e)boranophosphate,(1f)mesylphosphorami-date,(2a)nativeRNA,(2b)2,-O-methylRNA,(2c)2,-O-(2-methoxy)ethylRNA,(3)bridged/lockednucleicacid(B/LNA),(4)2,-α-?uoroDNA,(5)tricyclo-DNA(tcDNA),(6)peptidenucleicacid(PNA),and(7)phosphordiamidatemorpholinooligomer(PMO).
2.2.SmallInterferingRNAs(siRNAs)
SmallinterferingRNAs(siRNAs)are(usually)double-strandedoligoribonucleotides(asinFigure
2,
2a)withalengthof20–25ntperstrand,whichwerefoundinplantsin1999[
109]
.Theyearbefore,FireandMellodiscoveredanaturalprocessofspeci?cgenesilencingtermed“RNAinterference”(RNAi)thatwasmediatedbyshortdouble-strandedRNAs(includingsiRNAs)viaamechanismthatisnotablydifferentfromtheantisensemechanism(theNobelPrizeinPhysiologyandMedicineof2006)[
12]
.Later,TuschlandcoworkersdemonstratedthatsyntheticsiRNAsareabletoinduceRNAiinmammals[
110]
. AtypicalsiRNAhasdinucleotideoverhangsatthe3,-endofeachstrand.Onestrandthatiscomplementarytoaspeci?cregionofthetargetmRNAisusuallycalledtheantisensestrand,whiletheotheroneiscalledthesenseorpassengerstrand[
111]
.Innature,thisstructureresultsfromtheactionoftheDicerenzyme,whichcleaveslongdouble-strandedRNAsorshorthairpinRNAsintosiRNAduplexes(Figure
3)[
112]
.Then,intheRNA-inducedsilencingcomplex(RISC)withtheparticipationoftheArgonautproteinAgo2,thesiRNAduplexisunwound,andthecomplementaryduplexoftheantisensestrandwith
Molecules2021,26,54205of36
theconcomitantmRNAisformed,followedbydegradationofthelatter.ThisresultsinpotentexpressiondownregulationforthecorrespondinggeneviatranslationarrestatthemRNAlevel,similarlytothatoftheantisensemechanism(Figure
3)
.
Figure3.ThemechanismofRNAinterference(RNAi)mediatedbysmallinterferingRNAs(siRNAs).
Astheoriginandprogressionofmanydiseasesareassociatedwithupregulationofaparticulargene,theuseofsyntheticsiRNAsfortherapeuticgenesilencingisofgreatinterest[
113]
.However,siRNAdeliverytospeci?ctissues,withthenotableexceptionoftheliverviatherespectiveGalNacconjugates[
114
],remainsanobstacleonthewaytotheclin-ics.Nevertheless,therecentFDAapprovaloftwomoretherapeuticsiRNAs(apartfromthepioneeringpatisiran),givosiran(Givlaari?)[
115
]andlumasiran(Oxlumo?)[
116
],aswellasonemoreapprovedbytheEuropeanMedicinesAgency(EMA),inclisiran(Leqvio?)[
117
],isindicativeofthegreatpromiseofferedbythisparticularareaofdrugdevelopment.
2.3.CRISPR/Cas9
Theclusteredregularlyinterspacedshortpalindromicrepeats(CRISPR)were?rstdiscoveredinE.coliin1987[
118
],buttheirdetailedstudyonlybeganin1993byFranciscoMojica[
119]
.Later,Jansenetal.investigatedthatneartheCRISPRlocus,thereisalwaysasetofhomologousgenescalledCRISPR-associatedsystemsorCasgenesthatencodeendo-orexonucleases[
120]
.AlthoughCRISPR/Cassystemswerefoundinalargenumberofprokaryotes,almostnothingwasknownabouttheirfunctionuntil2005,whenMojicaetal.publishedapapershowingtherelationshipofCRISPRlociwithadaptiveimmunityinprokaryotes[
121]
.Severalfurtherstudieshaveshownthatbetweenrepeatsinloci,therearedifferentDNA“spacers”correspondingtopartsoftheviralgenomescorrespondingtopastparasitesofthesebacteria[
122]
.Thus,spacerscarryinheritedmemoriesofpastcellularinvasions.CRISPRRNA(crRNA)istranscribedfromthesespacersanddirectsCasproteinstotheforeignviruses,causingthecleavageoftheforeignDNA[
123]
.Inaddition,ithasbeenshownthatCasproteinsneedaspecialsequencelocalizednearthetargetDNA,calledaprotospaceradjacentmotif(PAM),forrecognitionandbindingtothetarget[
124]
. FromallthevarietyofCRISPR/Cassystems,scientistsweremostinterestedinthetypeIIsystemfromStreptococcuspyogenesfortherapeuticapplicationingeneticengineering,sinceonlyoneCas9proteinisrequiredforitsfulloperation[
125]
.InadditiontoCas9,thissystemrequiresthepresenceofcrRNAandtrans-activatingCRISPRRNA(tracrRNA)[
126
],whichtogetherformaduplexthatdirectsCas9endonucleasetothetarget.Later,DoudnaandCharpentierwithcolleaguesdesignedasystemthatincludedonlytwoelements,Cas9andchimericRNAcombinedfromtwomoleculescrRNAandtracrRNA,calledasingle-guideRNA(sgRNA)[
127]
.Withsuchasystem,itbecamepossibletodirectCas9toanyDNAsequenceforitscleavageonlybychangingthenucleotidesequenceofsgDNA.
Theworkwasdeemedsosigni?cantthatitwasawardedaNobelPrizeinChemistryin2020.ThepossibilityofusingtheCRISPR/Cas9systemineukaryoticcellshasbeendemon-strated[
128
–
130]
.Itwasalsoshownthatineukaryoticcells,afterCRISPR/Cas9-mediateddouble-strandedDNAbreaks,theDNAmoleculeisnotdegraded,butratherrepairedbytwomainpathways,namelynon-homologousend-joining(NHEJ)andhomology-directedrepair(HDR)[
131]
.HDRispreferredbecauseitallowsthedesirednucleotidesequencetobeobtainedbyusinganexogenoustemplateasarecombinationdonor.Currently,manyvariantsoftheCas9proteinhavebeendeveloped[
132
–
134]
.
Molecules2021,26,54206of36
Today,inmostcases,aclinicalapplicationofCRISPRisbasedonexvivogeneeditingofcellswiththeirsubsequentre-introductionintothepatient[
132]
.Theexvivoeditingapproachishighlyeffectiveformanydiseases,includingcancerandsicklecelldisease.Inturn,invivoeditingislargelylimitedbythelackofavailabilityofthetargettissueororgan.Despitethis,recentlyaCRISPR-modi?edviruswasinjectedintothepatient’seyeinanattempttotreatLebercongenitalamaurosis[
133]
.However,beforewidespreadapplicationofCRISPRtechnologyinclinicalpractice,itisnecessarytocarryoutmanymoreexperimentstomake?nalconclusionsontheeffectivenessandsafetyofthismethodinvivo.
2.4.TheProblemofOligonucleotideDelivery
Incontradistinctiontosmall-moleculedrugs,oligonucleotidesaremacromolecules,andtheirphysicochemicalproperties,inparticular,theirpolarityandpolyanionicnatureoftheribosephosphatebackbone,essentiallypreventpassivediffusionthroughthephospho-lipidbilayerofabiologicalmembrane.Thus,overcomingaproblemofselectivedeliveryofanucleicaciddrugtotherightorgan/tissueaftersystemicorlocaladministration,followedbyef?cienttransportintothespeci?ccellsand,onceinsidethecell,translocationtothecorrectcellularcompartmentto?nditsmoleculartarget,isakeystoneofoligonucleotide-basedtherapy.OnthewaytobindauniqueRNA,theoligonucleotideoughttocrossanumberofextracellularandintracellularbarriers,whichhavebeenextensivelyreviewedbyJulianoandcoauthors[
134
–
137
]andothers[
138]
.
Itisbelievedthatoligonucleotidesaretakenupintocellsviareceptor-mediatedendo-cytosis[
139]
.Therefore,thereisaneedforanoligonucleotidetherapeutictoescapefromendosomesintothecytosoltotriggerRNAi(forsiRNAs),orreachthenucleusforsplice-switchingandRNaseHactivation[
140,
141]
.Allthewayfromtheinitialadministrationtotheultimatesiteoftherapeuticactivity,theoligonucleotidemaybeattackedbyvariousexo-andendonucleases[
142
–
144]
.Thesearethemainobstaclesonthewaytothesuccessfulclinicalapplicationoftherapeuticoligonucleotides.
Thereby,itbecomesanimportanttasktodesignspecialdeliveryvectorsfortheeffectivetransportofnucleicaciddrugsintothecytosolandnucleus.Viral,e.g.,adenoviral,vectorshavebeendevelopedasspeci?ccarriersfornucleicacidsforgenetransferandgenetherapy[
145]
.However,despiteseveralapprovedto-dategenetherapies[
146,
147
],therearestillconsiderablelimitationsduetoimmunogenicityandsafetyconcerns.Mainly,theapplicationofaviralvectortodelivercargotohumancellsinducesanimmuneresponse.Thus,repeatedadministrationofthesameviralconstructsbecomesuseless[
148]
.
Thus,non-viralvectorshavereceivedwidespreadattentionasanalternativedeliverystrategythatcouldensuresafe,ef?cient,andaddressableoligonucleotidedelivery.Thenon-viralmethodstraditionallyincludetheuseofliposomes[
149
],polymers,dendrimers[
150
],inorganicnanoparticles,orconjugationtocertainsmallmolecules[
151]
.Amongtheabove,cell-penetratingpeptideshavebecomeoneofthemostpromisingcarrierstohelpoligonu-cleotidestotranslocatethroughcellularbarriersviaeithercovalent(peptideconjugate)ornon-covalent(peptideadditive)association.
3.Peptide-MediatedCellularDelivery:ABriefOverview
Theterm“cell-penetratingpeptide”(CPP)wasintroducedbyLangelandcoau-thors[
152
]andusuallyreferstoashort-tomedium-sizepeptidecontainingbetween5and40aminoacids.ACPPcanpassthroughcellmembranesthroughenergy-dependentorenergy-independentmechanisms,andmoreover,itcanfacilitatetheintracellulartrans-portofvariouscargomolecules,whicharepoorlyabletocrossthemembranesalone,suchasother(non-cell-penetrating)peptides,proteins,nanoparticles,ornucleicacids[
153]
.
The?rstCPPwasdiscoveredover30yearsagoattheendofthe1980s.Tworesearchgroups,whenstudyingtheactivityofthetransactivationtranscriptionactivator(Tat)domainofHIV-1,independentlynoticedthatitcanbeef?cientlyinternalizedbycellsinvitro
[154,
155]
.Afewyearslater,theProschiantzgroup,whenstudyingtheroleof
Molecules2021,26,54207of36
Drosophilahomeodomainproteinsinpost-mitoticneurons,discoveredthata60-amino-acidhomeodomainproteinsequenceoftheAntennapediagenewasabletocrossbiologicalmembranesbyanenergy-independentpathway.ThediscoveryledtothestudyoftheabilityofaseriesofsyntheticpeptidesderivedfromthethirdhelixoftheAntennapediahomeodomaintobeinternalizedbycells.Inparticular,itwasshownthata16-merpeptidenamedpenetratin(pAntp)successfullytranslocatedintocells,whileshorterpeptideswerenotinternalized[
156]
.
Later,LebleuandcoauthorsprobedthesequenceofTatproteintoascertainwhichsequencemayberesponsibleforitscellularuptake.Toachievethis,severalpeptidesfromresidues37–60oftheTatdomainweresynthesized.Asaresult,ashorterversionofTatpeptide13aminoacidsinlength,locatedfromaminoacids48to60,wasidenti?edasnecessaryforpenetrationintocells[
157]
.
In1998,thesuccessfulapplicationofpAntpforinvivodeliveryintoBowescellsof21-merPNAblockingtheexpressionofthegalaninreceptorwasdemonstrated[
158]
.Oneyearlater,theTatpeptidewasusedforinvivodeliveryofβ-galactosidase[
159]
.Thesestud-iesdemonstratedthepotentialofCPPsfortheinvivodeliveryofcargomacromolecules,whichisbeingextensivelystudieduptonowtotransportoligonucleotides,theiranalogs,andotherdif?cult-to-deliverpotentialtherapeuticsacrosscellularmembranes[
160,
161]
.
4.Cell-PenetratingPeptides(CPPs):TypesandExamples
Atdifferenttimes,variouscriteriabasedonthesequence,function,orpenetrationmechanismhavebeenproposedforclassi?cationofCPPs.However,thereiscurrentlynosingletaxonomyofthesepeptides.TherearetwoCPPclassi?cationsintheliter-ature:onethatisbasedontheoriginofpeptidesandtheotheronebasedontheirphysicochemicalproperties.
Bytheirorigin,thepeptidesareclassi?edintoprotein-derivedones,suchasTatorpenetratin;synthetic,suchaspolyarginineR8;andchimeric,whicharecombinedfrompeptidefragmentswithdifferentproperties,suchastransportan.Thistypeofclassi?cationisnotquiteconvenientandismostlyhistoricalbecauseitdoesnotallowonetoevaluateCPPsfromthepointofviewoftheirinteractionwithcells.
Accordingtotheirphysicochemicalproperties,CPPsarebroadlydividedintothreemainclasses:cationic,amphipathic,andhydrophobicpeptides.
4.1.PolycationicCPPs
Polycationicpeptides,asthenamesuggests,consistpredominantlyofpositivelychargedaminoacidresidues,suchasArg,Lys,His,or,morerarely,Ornandothers.Thispolycationicnatureofpeptidesallowsthemtobeeffectivelyinternalizedbycells.Oneofthe?rstpolycationicpeptidescanberightfullyconsideredtheTatpeptide,whichcontainsthearginine-richRKKRRQRRRsequence.Anumberofstudieshavebeencarriedouttodeterminetheoptimalcompositionandamountofpositivelychargedaminoacidresidues.Thus,itwasfoundthat,?rst,peptidesrichinLys,His,orOrnresiduesarelessef?cientlyabsorbedbycellsthanpeptidesrichinArg[
162]
.ThiscanberationalizednotonlybyahigherpKaofguanidinegroupsofarginine(pKaofca.13)butalsobytheirabilitytoformbidentatehydrogenbondswithnegativelychargedcarboxyl,sulfate,andphos-phategroupsofthecompoundspresentinthecellularmembrane,suchasphospholipids,acidicpolysaccharides,andproteins[
163]
.Second,theminimumrequiredamountofArgresiduesisnotlessthan6,buttoensureeffectivecellularuptake,theoptimalamountis8–10residues[
164]
.MostofthepolycationicCPPsareofnaturalorigin(Tat,penetratin),butsyntheticCPPshavealsobeendevelopedandincludeargininehomopolymers,pep-tidesofthePipseriesdevelopedbytheGaitgroup,andothers[
52
](moreexamplesinTable
1)
.
Molecules2021,26,54208of36
4.2.AmphipathicCPPs
TheamphipathicclassisthemostextensiveamongallCPPs(about40%)[
165]
.Inadditiontopositivelychargedhydrophilicregions,amphipathicpeptidesalsocontainhydrophobicregionsrepresentedbyvaline,leucine,isoleucine,andalanineresidues[
166]
.DespitethefactthatmostamphipathicCPPsarechimericorsynthetic,therearealsorepre-sentativesderivedfromnaturalproteins.TheamphipathicCPPclassissubdividedintothreesubclasses:primary,secondary,andproline-richCPPs.Often,primaryamphipathicCPPsarechimericpeptidesobtainedbycovalentlybindingadomainconsistingofhy-drophobicaminoacids(necessaryforef?cienttargetingofcellmembranes)withanuclearlocalizationsignal(NLS).AnNLSisashortcationicpeptidebasedonlysine,arginine,orproline-richmotivesdirectingpeptideconjugatestothecellnucleusthroughnuclearpores.RepresentativesofthissubclassareMPGpeptides[
167
]andPep-1[
168
],peptidesconsistingofahydrophilicpartNLSfromthelargeT-antigenofthesimianvacuolatingvirus40(SV40)andhydrophobicpartsglycoprotein41(gp41)ofthehumanimmunod-e?ciencyvirus(HIV)oratryptophan-richcluster,respectively.NaturalrepresentativesofthissubclassaretheARF(1–22)peptidecorrespondingtotheN-terminaldomainofthetumorsuppressorproteinp14ARF[
169
],BPrPp(1–28)andMPrPp(1–30)derivedfromprionproteins[
170,
171
],andothers(formoreexamples,seeTable
1)
.SecondaryamphipathicCPPsusuallyhaveα-helicalconformationwithhydrophilicandhydrophobicresiduesgroupedonoppositesidesofthehelix.Examplesofsuchpeptidesarethemodelamphipathicpeptide(MAP)[
172
],transportan[
158
]oritsanalogueTP-10[
173
],CADYdesignedbycombinationaromatictryptophanandcationicarginineresidues[
174
],andothers.Itshouldbenotedthatamongthesecondaryamphipathicpeptides,therearealsoanionicrepresentatives,suchasanionicp28obtainedfromazurin[
175,
176]
.Thelasttypeofamphipathicpeptidesisproline-richCPPs.Duetoitssecondaryaminogroup,prolinecannotserveasadonorofahydrogenbondforeithertheα-helixortheβ-fold.Suchpeptidesusuallyformaleft-handedpolyprolineIIhelix(PPII).Anexampleofproline-richpeptidesisasyntheticderivativeofBac7(afragmentofantimicrobialproteinfromthebactenecinfamilycontaining59aminoacids,withfour14-merrepeats);thefunctionsofcellpermeabilityandantimicrobialactivityofBac7areconcentratedin24aminoacids(Bac1–24)[
177,
178]
.Otherexamplesaresyntheticproline-richpeptides(PPR)nand(PRR)n,wherenisintherangeof3to6[
179]
.
4.3.HydrophobicCPP
HydrophobicCPPsconsistofnon-polarorlow-chargedaminoacidresiduesandarethesmallestclassofCPPs.Themechanismsoftheircellularpenetrationarenotfullyunderstoodbutapparentlyoccur
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 游泳救生員初級(jí)測(cè)試題與答案
- 推拿治療學(xué)測(cè)試題+答案
- 業(yè)務(wù)學(xué)習(xí)心得體會(huì)范文
- 醫(yī)美服裝采購(gòu)合同范本
- 下半年人力資源部工作計(jì)劃
- 三年級(jí)數(shù)學(xué)綜合實(shí)踐課教案
- 中藥炮制工中級(jí)練習(xí)題(含答案)
- 辦公別墅 出租合同范本
- 建筑信息模型職業(yè)技能理論知識(shí)試題庫(kù)及參考答案
- 工程地質(zhì)與土力學(xué)練習(xí)題(含答案)
- 項(xiàng)目經(jīng)理個(gè)人先進(jìn)事跡材料(4篇)
- 火龍罐技術(shù)課件
- 怎樣防治魚的中華魚鳋病
- GRR-計(jì)數(shù)型(范例填寫)
- VDA6.3:2023 汽車核心工具自我評(píng)估測(cè)試題庫(kù)真題 (含答案)
- “中藥配送服務(wù)中心”方案
- GRR表格MSA第四版完整版
- 第一講 新媒體藝術(shù)基礎(chǔ)-數(shù)字媒體藝術(shù)導(dǎo)論課件PPT
- 2023年山東電子職業(yè)技術(shù)學(xué)院?jiǎn)握忻嬖嚹M試題及答案解析
- 全口義齒修復(fù)有關(guān)的基本知識(shí) 全口義齒固位和穩(wěn)定
- 內(nèi)科學(xué)尿路感染(講課)
評(píng)論
0/150
提交評(píng)論