2025屆廣西壯族自治區(qū)欽州市數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第1頁(yè)
2025屆廣西壯族自治區(qū)欽州市數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第2頁(yè)
2025屆廣西壯族自治區(qū)欽州市數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第3頁(yè)
2025屆廣西壯族自治區(qū)欽州市數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第4頁(yè)
2025屆廣西壯族自治區(qū)欽州市數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆廣西壯族自治區(qū)欽州市數(shù)學(xué)高二上期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)橢圓+=1左焦點(diǎn)F1引直線交橢圓于A、B兩點(diǎn),F(xiàn)2是橢圓的右焦點(diǎn),則△ABF2的周長(zhǎng)是()A.20 B.18C.10 D.162.拋擲兩枚質(zhì)地均勻的硬幣,設(shè)事件“第一枚硬幣正面朝上”,事件“第二枚硬幣反面朝上”,則下列結(jié)論中正確的為()A.與互為對(duì)立事件 B.與互斥C與相等 D.3.已知橢圓的左右焦點(diǎn)分別為、,點(diǎn)在橢圓上,若、、是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)到軸的距離為A B.4C. D.4.已知拋物線上的點(diǎn)到其準(zhǔn)線的距離為,則()A. B.C. D.5.已知F是雙曲線的右焦點(diǎn),過(guò)F且垂直于x軸的直線交E于A,B兩點(diǎn),若E的漸近線上恰好存在四個(gè)點(diǎn),,,,使得,則E的離心率的取值范圍是()A. B.C. D.6.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=17.在下列各圖中,每個(gè)圖的兩個(gè)變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)8.已知橢圓的中心為,一個(gè)焦點(diǎn)為,在上,若是正三角形,則的離心率為()A. B.C. D.9.已知半徑為2的圓經(jīng)過(guò)點(diǎn)(5,12),則其圓心到原點(diǎn)的距離的最小值為()A.10 B.11C.12 D.1310.古希臘數(shù)學(xué)家歐幾里得在《幾何原本》中描述了圓錐曲線共性,并給出了圓錐曲線的統(tǒng)一定義,只可惜對(duì)這一定義歐幾里得沒(méi)有給出證明.經(jīng)過(guò)了500年,到了3世紀(jì),希臘數(shù)學(xué)家帕普斯在他的著作《數(shù)學(xué)匯篇》中,完善了歐幾里得關(guān)于圓錐曲線的統(tǒng)一定義,并對(duì)這一定義進(jìn)行了證明.他指出,到定點(diǎn)的距離與到定直線的距離的比是常數(shù)的點(diǎn)的軌跡叫做圓錐曲線;當(dāng)時(shí),軌跡為橢圓;當(dāng)時(shí),軌跡為拋物線;當(dāng)時(shí),軌跡為雙曲線.現(xiàn)有方程表示的曲線是雙曲線,則的取值范圍為()A. B.C. D.11.已知直線l與拋物線交于不同的兩點(diǎn)A,B,O為坐標(biāo)原點(diǎn),若直線的斜率之積為,則直線l恒過(guò)定點(diǎn)()A. B.C. D.12.已知,,,則,,的大小關(guān)系是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,,三點(diǎn)共線,則m的值為___________.14.已知,空間直角坐標(biāo)系中,過(guò)點(diǎn)且一個(gè)法向量為的平面的方程為.用以上知識(shí)解決下面問(wèn)題:已知平面的方程為,直線是兩個(gè)平面與的交線,則直線與平面所成角的正弦值為___________.15.正方體的棱長(zhǎng)為2,點(diǎn)為底面正方形的中心,點(diǎn)在側(cè)面正方形的邊界及其內(nèi)部運(yùn)動(dòng),若,則點(diǎn)的軌跡的長(zhǎng)度為______16.若,m,三個(gè)數(shù)成等差數(shù)列,則圓錐曲線的離心率為______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)數(shù)列的前項(xiàng)和為,,且滿足,.(1)求數(shù)列的通項(xiàng)公式;(2)證明:對(duì)一切正整數(shù),有.18.(12分)設(shè)函數(shù).(1)討論函數(shù)在區(qū)間上的單調(diào)性;(2)函數(shù),若對(duì)任意的,總存在使得,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在三棱柱中,平面ABC,,,,點(diǎn)D,E分別在棱和棱上,且,,M為棱的中點(diǎn)(1)求證:;(2)求直線AB與平面所成角的正弦值20.(12分)在平面直角坐標(biāo)系中,動(dòng)點(diǎn),滿足,記點(diǎn)的軌跡為(1)請(qǐng)說(shuō)明是什么曲線,并寫出它的方程;(2)設(shè)不過(guò)原點(diǎn)且斜率為的直線與交于不同的兩點(diǎn),,線段的中點(diǎn)為,直線與交于兩點(diǎn),,請(qǐng)判斷與的關(guān)系,并證明你的結(jié)論21.(12分)已知函數(shù),(),(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值(2)當(dāng)時(shí),若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍22.(10分)設(shè)F為橢圓的右焦點(diǎn),過(guò)點(diǎn)的直線與橢圓C交于兩點(diǎn).(1)若點(diǎn)B為橢圓C的上頂點(diǎn),求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)橢圓的定義求得正確選項(xiàng).【詳解】依題意,根據(jù)橢圓的定義可知,三角形的周長(zhǎng)為.故選:A2、D【解析】利用互斥事件和對(duì)立事件的定義分析判斷即可【詳解】因?yàn)閽仈S兩枚質(zhì)地均勻的硬幣包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣正面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上,4種情況,其中事件包含第一枚硬幣正面朝上第二枚硬幣正面朝上,第一枚硬幣正面朝上第二枚硬幣反面朝上2種情況,事件包含第一枚硬幣正面朝上第二枚硬幣反面朝上,第一枚硬幣反面朝上第二枚硬幣反面朝上2種情況,所以與不互斥,也不對(duì)立,也不相等,,所以ABC錯(cuò)誤,D正確,故選:D3、D【解析】設(shè)橢圓短軸的一個(gè)端點(diǎn)為根據(jù)橢圓方程求得c,進(jìn)而判斷出,即得或令,進(jìn)而可得點(diǎn)P到x軸的距離【詳解】解:設(shè)橢圓短軸的一個(gè)端點(diǎn)為M由于,,;,只能或令,得,故選D【點(diǎn)睛】本題主要考查了橢圓的基本應(yīng)用考查了學(xué)生推理和實(shí)際運(yùn)算能力是基礎(chǔ)題4、C【解析】首先根據(jù)拋物線的標(biāo)準(zhǔn)方程的形式,確定的值,再根據(jù)焦半徑公式求解.【詳解】,,因?yàn)辄c(diǎn)到的準(zhǔn)線的距離為,所以,得故選:C5、D【解析】由題意以AB為直徑的圓M與雙曲線E的漸近線有四個(gè)不同的交點(diǎn),則必有,又當(dāng)圓M經(jīng)過(guò)原點(diǎn)時(shí)此時(shí)以AB為直徑的圓M上與雙曲線E的漸近線有三個(gè)不同的交點(diǎn),不滿足,從而得出答案.【詳解】由題意,由得,雙曲線的漸近線方程為所以,由,可知,,,在以AB為直徑的圓M上,圓的半徑為即以AB為直徑的圓M與雙曲線E的漸近線有四個(gè)不同的交點(diǎn)當(dāng)圓M與漸近線相切時(shí),圓心到漸近線的距離,則必有,即,則雙曲線E的離心率,所以又當(dāng)圓M經(jīng)過(guò)原點(diǎn)時(shí),,解得E的離心率為,此時(shí)以AB為直徑圓M與雙曲線E的漸近線有三個(gè)不同的交點(diǎn),不滿足條件.所以E的離心率的取值范圍是.故選:D6、A【解析】根據(jù)雙曲線定義求解【詳解】,則根據(jù)雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題7、D【解析】根據(jù)圖形可得(1)具有函數(shù)關(guān)系;(2)(3)的散點(diǎn)分布在一條直線或曲線附近,具有相關(guān)關(guān)系;(4)的散點(diǎn)雜亂無(wú)章,不具有相關(guān)關(guān)系.【詳解】對(duì)(1),所有的點(diǎn)都在曲線上,故具有函數(shù)關(guān)系;對(duì)(2),所有的散點(diǎn)分布在一條直線附近,具有相關(guān)關(guān)系;對(duì)(3),所有的散點(diǎn)分布在一條曲線附近,具有相關(guān)關(guān)系;對(duì)(4),所有的散點(diǎn)雜亂無(wú)章,不具有相關(guān)關(guān)系.故選:D.8、D【解析】根據(jù)是正三角形可得的坐標(biāo),代入方程后可求離心率.【詳解】不失一般性,可設(shè)橢圓的方程為:,為半焦距,為右焦點(diǎn),因?yàn)榍?,故,故,,整理得到,故,故選:D.9、B【解析】由條件可得圓心的軌跡是以點(diǎn)為圓心,半徑為2的圓,然后可得答案.【詳解】因?yàn)榘霃綖?的圓經(jīng)過(guò)點(diǎn)(5,12),所以圓心的軌跡是以點(diǎn)為圓心,半徑為2的圓,所以圓心到原點(diǎn)的距離的最小值為,故選:B10、C【解析】對(duì)方程進(jìn)行化簡(jiǎn)可得雙曲線上一點(diǎn)到定點(diǎn)與定直線之比為常數(shù),進(jìn)而可得結(jié)果.【詳解】已知方程可以變形為,即,∴其表示雙曲線上一點(diǎn)到定點(diǎn)與定直線之比為常數(shù),又由,可得,故選:C.11、A【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到,進(jìn)而得到的值,將直線的斜率之積為,用A,B點(diǎn)坐標(biāo)表示出來(lái),結(jié)合的值即可求得答案.【詳解】設(shè)直線方程為,聯(lián)立,整理得:,需滿足,即,則,由,得:,所以,即,故,所以直線l為:,當(dāng)時(shí),,即直線l恒過(guò)定點(diǎn),故選:A.12、B【解析】若對(duì)數(shù)式的底相同,直接利用對(duì)數(shù)函數(shù)的性質(zhì)判斷即可,若底不同,則根據(jù)結(jié)構(gòu)構(gòu)造函數(shù),利用函數(shù)的單調(diào)性判斷大小【詳解】對(duì)于的大?。?,,明顯;對(duì)于的大?。簶?gòu)造函數(shù),則,當(dāng)時(shí),在上單調(diào)遞增,當(dāng)時(shí),在上單調(diào)遞減,即對(duì)于的大?。?,,,故選B【點(diǎn)睛】將兩兩變成結(jié)構(gòu)相同的對(duì)數(shù)形式,然后利用對(duì)數(shù)函數(shù)的性質(zhì)判斷,對(duì)于結(jié)構(gòu)類似的,可以通過(guò)構(gòu)造函數(shù)來(lái)來(lái)比較大小,此題是一道中等難度的題目二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)三點(diǎn)共線與斜率的關(guān)系即可得出【詳解】由,,三點(diǎn)共線,可知所在的直線與所在的直線平行,又,由已知可得,解得故答案為:14、【解析】由題意分別求出這三個(gè)平面的法向量,設(shè)直線的方向向量為,由直線與平面與的法向量垂直,得出,由向量的夾角公式可得答案.【詳解】由,解得,即直線與平面的交點(diǎn)坐標(biāo)為平面的方程為,可得所以平面的法向量為平面的法向量為,的法向量為設(shè)直線的方向向量為,則,即取,設(shè)直線與平面所成角則故答案為:15、【解析】取中點(diǎn),利用線面垂直的判定方法可證得平面,由此可確定點(diǎn)軌跡為,再計(jì)算即可.【詳解】取中點(diǎn),連接,平面,平面,,又四邊形為正方形,,又,平面,平面,又平面,;由題意得:,,,,;平面,,平面,,在側(cè)面的邊界及其內(nèi)部運(yùn)動(dòng),點(diǎn)軌跡為線段;故答案為:.16、【解析】由等差中項(xiàng)的性質(zhì)求參數(shù)m,即可得曲線標(biāo)準(zhǔn)方程,進(jìn)而求其離心率.【詳解】由題意,,可得,所以圓錐曲線為,則,,故.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),;(2)證明見解析.【解析】(1)利用關(guān)系可得,根據(jù)等比數(shù)列的定義易知為等比數(shù)列,進(jìn)而寫出的通項(xiàng)公式;(2)由,將不等式左側(cè)放縮,即可證結(jié)論.【小問(wèn)1詳解】當(dāng)時(shí),,,兩式相減得:,整理可得:,而,所以是首項(xiàng)為2,公比為1的等比數(shù)列,故,即,.【小問(wèn)2詳解】,..18、(1)答案見解析;(2).【解析】(1)求導(dǎo),根據(jù)導(dǎo)函數(shù)的正負(fù)性分類討論進(jìn)行求解即可;(2)根據(jù)存在性和任意性的定義,結(jié)合導(dǎo)數(shù)的性質(zhì)、(1)的結(jié)論、構(gòu)造函數(shù)法分類討論進(jìn)行求解即可.【小問(wèn)1詳解】,,①當(dāng)時(shí),恒成立,在上單調(diào)遞增.②當(dāng)時(shí),恒成立,在上單調(diào)遞減,③當(dāng)吋,,在單調(diào)遞減,單調(diào)遞增.綜上所述,當(dāng)吋,在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,當(dāng)時(shí),在單調(diào)遞減,單調(diào)遞增.【小問(wèn)2詳解】由題意可知:在單調(diào)遞減,單調(diào)遞增由(1)可知:①當(dāng)時(shí),在單調(diào)遞增,則恒成立②當(dāng)時(shí),在單調(diào)遞減,則應(yīng)(舍)③當(dāng)時(shí),,則應(yīng)有令,則,且在單調(diào)遞增,單調(diào)遞減,又恒成立,則無(wú)解綜上,.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用構(gòu)造函數(shù)法,結(jié)合存在性、任意性的定義進(jìn)行求解是解題的關(guān)鍵.19、(1)證明見解析;(2)【解析】(1)由線面垂直、等腰三角形的性質(zhì)易得、,再根據(jù)線面垂直的判定及性質(zhì)證明結(jié)論;(2)構(gòu)建空間直角坐標(biāo)系,確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求的方向向量、面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問(wèn)1詳解】在三棱柱中,平面,則平面,由平面,則,,則,又為的中點(diǎn),則,又,則平面,由平面,因此,.【小問(wèn)2詳解】以為原點(diǎn),以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,.∴,,,,設(shè)為面的法向量,則,令得,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.20、(1)橢圓,(2),證明見解析【解析】(1)結(jié)合橢圓第一定義直接判斷即可求出的軌跡為;(2)設(shè)直線的方程為,,,聯(lián)立橢圓方程,寫出韋達(dá)定理;由中點(diǎn)公式求出點(diǎn),進(jìn)而得出直線方程,聯(lián)立橢圓方程求出,結(jié)合弦長(zhǎng)公式可求,可轉(zhuǎn)化為,結(jié)合韋達(dá)定理可化簡(jiǎn),進(jìn)而得證.【小問(wèn)1詳解】設(shè),,則因?yàn)?,滿足,即動(dòng)點(diǎn)表示以點(diǎn),為左、右焦點(diǎn),長(zhǎng)軸長(zhǎng)為4,焦距為的橢圓,其軌跡的方程為;【小問(wèn)2詳解】可以判斷出,下面進(jìn)行證明:設(shè)直線的方程為,,,由方程組,得①,方程①判別式為,由,即,解得且由①得,,所以點(diǎn)坐標(biāo)為,直線方程為,由方程組,得,,所以又所以.21、【解析】(1)求a,b的值,根據(jù)曲線與曲線在它們的交點(diǎn)處具有公共切線,可知切點(diǎn)處的函數(shù)值相等,切點(diǎn)處的斜率相等,列方程組,即可求出的值;(2)求k的取值范圍.,先求出的解析式,由已知時(shí),設(shè),求導(dǎo)函數(shù),確定函數(shù)的極值點(diǎn),進(jìn)而可得時(shí),函數(shù)在區(qū)間上的最大值為;時(shí),函數(shù)在在區(qū)間上的最大值小于,由此可得結(jié)論試題解析:(1),因?yàn)榍€與曲線在它們的交點(diǎn)處具有公共切線,所以,所以;(2)當(dāng)時(shí),,,,令,則,令,得,所以在與上單調(diào)遞增,在上單調(diào)遞減,其中為極大值,所以如果在區(qū)間最大值為,即區(qū)間包含極大值點(diǎn),所以考點(diǎn):導(dǎo)數(shù)的幾何意義,函數(shù)的單調(diào)性與最值22、(1);(2)證明見解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標(biāo),從而可求的直線方程;(2)設(shè),直線(或),則可用兩點(diǎn)的坐標(biāo)表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達(dá)定理可化簡(jiǎn)前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的上頂點(diǎn),則.又過(guò)點(diǎn)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論