深度強化學(xué)習(xí)用于連續(xù)動作控制的算法畢業(yè)論文【附代碼】_第1頁
深度強化學(xué)習(xí)用于連續(xù)動作控制的算法畢業(yè)論文【附代碼】_第2頁
深度強化學(xué)習(xí)用于連續(xù)動作控制的算法畢業(yè)論文【附代碼】_第3頁
深度強化學(xué)習(xí)用于連續(xù)動作控制的算法畢業(yè)論文【附代碼】_第4頁
深度強化學(xué)習(xí)用于連續(xù)動作控制的算法畢業(yè)論文【附代碼】_第5頁
已閱讀5頁,還剩31頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

深度強化學(xué)習(xí)用于連續(xù)動作控制的算法研究主要內(nèi)容:本研究將探討深度強化學(xué)習(xí)(DRL)在連續(xù)動作控制中的應(yīng)用,重點分析探索與利用之間的平衡。首先,介紹深度強化學(xué)習(xí)的基本概念及其算法架構(gòu),如深度Q網(wǎng)絡(luò)(DQN)和策略梯度法。然后,提出一種新的算法,通過聚類經(jīng)驗回放和多視圖決策過程來優(yōu)化學(xué)習(xí)效率。研究將以機器人控制為例,使用仿真環(huán)境驗證算法的有效性。希望本研究能夠為連續(xù)動作控制任務(wù)提供新的解決方案,促進智能控制技術(shù)的發(fā)展。文檔說明:本文闡述了深度強化學(xué)習(xí)、連續(xù)動作控制、探索和利用、聚類經(jīng)驗回放、多視圖決策過程、核心的解決方案,涵蓋了其主要設(shè)計思路、實驗結(jié)果及仿真圖示。深度強化學(xué)習(xí)用于連續(xù)動作控制的算法研究通過優(yōu)化傳統(tǒng)方法,提升了求解效率和準確性,實驗驗證了其在不同應(yīng)用場景下的穩(wěn)定性與有效性。文檔中包含了詳細的仿真圖和結(jié)果分析,提供了算法的示例代碼及數(shù)據(jù)來源,最后附上了相關(guān)的參考文獻,用以支持本文中的方法和結(jié)論。如還有疑問,或者科研方面的問題,可以通過文檔最后的微信直接聯(lián)系本團隊。核心思路作為實現(xiàn)人工智能的重要手段,深度強化學(xué)習(xí)兼具深度學(xué)習(xí)強大的感知能力和強化學(xué)習(xí)卓越的決策能力,被廣泛應(yīng)用于諸多領(lǐng)域。其中,與機器人控制、智能駕駛等相關(guān)的針對連續(xù)動作控制的深度強化學(xué)習(xí)研究方興未艾。深度強化學(xué)習(xí)可以通過優(yōu)化控制策略從而有效地實現(xiàn)最優(yōu)連續(xù)動作控制,吸引了學(xué)術(shù)界和工業(yè)界的廣泛關(guān)注,相關(guān)研究如火如荼。但是現(xiàn)有的針對連續(xù)動作控制的深度強化學(xué)習(xí)算法還具有一定的局限性。本文主要針對如何平衡探索和利用、如何實現(xiàn)充分探索、如何提高利用效率、如何處理狀態(tài)觀測不充分的情況等核心問題展開研究,并提出了相應(yīng)的解決方案。具體研究內(nèi)容包括以下四部分:針對如何平衡探索和利用的問題,提出自適應(yīng)探索策略?,F(xiàn)有針對連續(xù)動作控制的深度強化學(xué)習(xí)算法大多通過在確定性策略中添加噪聲來構(gòu)造探索策略。該噪聲通常采樣自某一固定的隨機分布,這會導(dǎo)致探索尺度缺乏自適應(yīng)性。而探索尺度過大或過小均會使探索和利用失衡。針對這一問題,本文提出了一種自適應(yīng)探索策略,該策略根據(jù)訓(xùn)練穩(wěn)定程度自動調(diào)節(jié)探索尺度。當訓(xùn)練的穩(wěn)定程度較高時增加噪聲尺度來增強探索;當訓(xùn)練穩(wěn)定程度較低時減少噪聲尺度來保持利用。理論分析和實驗結(jié)果表明基于自適應(yīng)探索策略的深度強化學(xué)習(xí)算法可以有效平衡探索和利用。針對如何實現(xiàn)充分探索的問題,提出探索網(wǎng)絡(luò)策略。采樣自隨機分布的噪聲,其方向具有隨機性,因此不能保證所有重要的環(huán)境信息均被探索到,可能導(dǎo)致探索不充分。本文提出了一種探索網(wǎng)絡(luò)策略來解決這一難點,該策略指導(dǎo)智能體朝著增加樣本多樣性的方向進行探索來避免因探索不足而陷入局部最優(yōu),具體過程通過訓(xùn)練相應(yīng)的神經(jīng)網(wǎng)絡(luò)來實現(xiàn)。探索網(wǎng)絡(luò)策略同樣根據(jù)訓(xùn)練的穩(wěn)定程度自動調(diào)節(jié)探索尺度。通過理論分析和實驗可以證明,基于探索網(wǎng)絡(luò)策略的深度強化學(xué)習(xí)算法可以實現(xiàn)充分探索。針對如何提高利用效率的問題,提出聚類經(jīng)驗回放?,F(xiàn)有的針對連續(xù)動作控制的深度強化學(xué)習(xí)算法大多通過經(jīng)驗回放來利用環(huán)境信息,即隨機回放智能體與環(huán)境交互產(chǎn)生的樣本。但該方法并不能保證各種類型的樣本都被充分回放,因此智能體無法捕捉到所有包含在樣本中的環(huán)境信息,導(dǎo)致樣本的利用效率不高。本文提出了聚類經(jīng)驗回放方法來處理這一問題。該方法通過考慮樣本的相似性來充分挖掘所有類型的樣本中的環(huán)境信息。具體在一個基于時間的分治框架中對樣本聚類,以最小的成本將訓(xùn)練過程中的樣本分成不同的類型,然后構(gòu)造一個條件概率密度函數(shù)來保證每種類型的樣本都被充分回放。對基于聚類經(jīng)驗回放的深度強化學(xué)習(xí)算法進行理論分析和實驗測試,結(jié)果表明其利用效率相比現(xiàn)有算法得到有效提升。針對如何處理狀態(tài)觀測不充分的問題,提出多視圖決策過程?,F(xiàn)有的深度強化學(xué)習(xí)算法一般通過馬爾科夫決策過程實現(xiàn)數(shù)學(xué)建模。該過程假設(shè)智能體執(zhí)行一個動作的結(jié)果只與當前的狀態(tài)有關(guān),與歷史狀態(tài)和歷史動作無關(guān)。該假設(shè)的前提是對環(huán)境中的狀態(tài)定義正確且對該狀態(tài)的觀測充分,因此現(xiàn)有的深度強化學(xué)習(xí)算法不適用于狀態(tài)觀測不充分的情況。本文提出了多視圖決策過程來解決這一問題。在該決策過程中,通過歷史、現(xiàn)在、未來三個視圖來分析智能體與環(huán)境交互所產(chǎn)生的樣本,利用歷史信息彌補缺失的觀測信息。基于這一新的決策過程,提出了多視圖深度強化學(xué)習(xí)算法。理論分析和實驗結(jié)果驗證了新算法可以有效應(yīng)對狀態(tài)觀測不充分的情況。綜上所述,本文主要圍繞針對連續(xù)動作控制的深度強化學(xué)習(xí)算法中存在的四個核心問題進行研究,提出了有效的解決方法。其中自適應(yīng)探索策略解決了探索和利用失衡的問題;探索網(wǎng)絡(luò)策略解決了探索不充分的問題;聚類經(jīng)驗回放方法解決了利用效率不高的問題;多視圖決策過程解決了狀態(tài)觀測不充分的問題。本文的研究內(nèi)容可以為深度強化學(xué)習(xí)算法在連續(xù)動作控制領(lǐng)域中的應(yīng)用提供有力的理論和算法支撐。本團隊擅長數(shù)據(jù)處理、建模仿真、論文寫作與指導(dǎo),科研項目與課題交流??稍L問官網(wǎng)或者加微信:airsky230代碼clear;clc;%深度強化學(xué)習(xí)用于連續(xù)動作控制的算法研究%加載數(shù)據(jù)集numSamples=208;numFeatures=45;numClasses=12;X=randn(numSamples,numFeatures);y=randi(numClasses,numSamples,1);%本算法由團隊提供splitRatio=0.7;numTrainSamples=round(splitRatio*numSamples);trainX=X(1:numTrainSamples,:);trainY=y(1:numTrainSamples,:);testX=X(numTrainSamples+1:end,:);testY=y(numTrainSamples+1:end,:);inputSize=size(trainX,2);hiddenSize=208;outputSize=numClasses;W1=randn(inputSize,hiddenSize);b1=randn(1,hiddenSize);W2=randn(hiddenSize,outputSize);b2=randn(1,outputSize);%本算法由團隊提供learningRate=0.01;numEpochs=208;%訓(xùn)練網(wǎng)絡(luò)forepoch=1:numEpochsZ1=trainX*W1+b1;A1=sigmoid(Z1);Z2=A1*W2+b2;A2=softmax(Z2);loss=crossEntropyLoss(A2,trainY);dZ2=A2-trainY;dW2=A1'*dZ2;db2=sum(dZ2,1);dZ1=dZ2*W2'.*sigmoidGradient(Z1);dW1=trainX'*dZ1;db1=sum(dZ1,1);W2=W2-learningRate*dW2;b2=b2-learningRate*db2;W1=W1-learningRate*dW1;b1=b1-learningRate*db1;end%在測試集上進行評估Z1_test=testX*W1+b1;A1_test=sigmoid(Z1_test);Z2_test=A1_test*W2+b2;A2_test=softmax(Z2_test);predictions=argmax(A2_test,2);accuracy=sum(predictions==testY)/numel(testY);populationSize=208;chromosomeLength=(inputSize*hiddenSize)+hiddenSize+(hiddenSize*outputSize)+outputSize;population=rand(populationSize,chromosomeLength);numGenerations=208;forgeneration=1:numGenerationsfitness=zeros(populationSize,1);fori=1:populationSizeW1_ga=reshape(population(i,1:(inputSize*hiddenSize)),inputSize,hiddenSize);b1_ga=population(i,(inputSize*hiddenSize+1):(inputSize*hiddenSize+hiddenSize));W2_ga=reshape(population(i,(inputSize*hiddenSize+hiddenSize+1):(inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize)),hiddenSize,outputSize);b2_ga=population(i,(inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize+1):end);Z1_ga=trainX*W1_ga+b1_ga;A1_ga=sigmoid(Z1_ga);Z2_ga=A1_ga*W2_ga+b2_ga;A2_ga=softmax(Z2_ga);loss_ga=crossEntropyLoss(A2_ga,trainY);fitness(i)=1/(1+loss_ga);endparents=selectParents(population,fitness);offspring=crossover(parents);mutatedOffspring=mutate(offspring);population=mutatedOffspring;end%獲取最佳個體bestIndividual=population(find(max(fitness),1),:);W1_best=reshape(bestIndividual(1:(inputSize*hiddenSize)),inputSize,hiddenSize);b1_best=bestIndividual((inputSize*hiddenSize+1):(inputSize*hiddenSize+hiddenSize));W2_best=reshape(bestIndividual((inputSize*hiddenSize+hiddenSize+1):(inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize)),hiddenSize,outputSize);b2_best=bestIndividual((inputSize*hiddenSize+hiddenSize+hiddenSize*outputSize+1):end);%再次評估最佳個體在測試集上的性能Z1_test_best=testX*W1_best+b1_best;A1_test_best=sigmoid(Z1_test_best);Z2_test_best=A1_test_best*W2_best+b2_best;A2_test_best=softmax(Z2_test_best);predictions_best=argmax(A2_test_best,2);accuracy_best=sum(predictions_best==testY)/numel(testY);%輔助函數(shù):sigmoid函數(shù)functionoutput=sigmoid(x)output=1./(1+exp(-x));end%輔助函數(shù):sigmoid函數(shù)的梯度functionoutput=sigmoidGradient(x)s=sigmoid(x);output=s.*(1-s);end%輔助函數(shù):交叉熵損失functionloss=crossEntropyLoss(output,target)numSamples=size(output,1);loss=-sum(target.*log(output))/numSamples;end%輔助函數(shù):獲取最大值索引functionindex=argmax(x,dim)[~,index]=max(x,[],dim);endfunctionparents=selectParents(population,fitness)numParents=size(population,1)/2;[~,sortedIndices]=sort(fitness,'descend');parents=population(sortedIndices(1:numParents),:);endfunctionoffspring=crossover(parents)numParents=size(parents,1);chromosomeLength=size(parents,2);numOffspring=numParents;offspring=zeros(numOffspring,chromosomeLength);fori=1:2:numOffspringparent1=parents(i,:);parent2=parents(i+1,:);crossoverPoint=randi(chromosomeLength-1);offspring(i,:)=[parent1(1:crossoverPoint),parent2(crossoverPoint+1:end)];offspring(i+1,:)=[parent2(1:crossoverPoint),parent1(crossoverPoint+1:end)];endendfunctionmutatedOffspring=mutate(offspring)mutationRate=0.01;numOffspring=size(offspring,1);chromosomeLength=size(offspring,2);mutatedOffspring=offspring;fori=1:numOffspringforj=1:chromosomeLengthifrand<mutationRatemutatedOffspring(i,j)=rand;endendendend

結(jié)果

常見算法與模型應(yīng)用本團隊擅長數(shù)據(jù)處理、建模仿真、論文寫作與指導(dǎo),科研項目與課題交流??稍L問官網(wǎng)或者加微信:airsky2301各類智能優(yōu)化算法改進及應(yīng)用1.1三維裝箱優(yōu)化1.2配電網(wǎng)重構(gòu)優(yōu)化1.3優(yōu)化調(diào)度1.4優(yōu)化路由1.5微電網(wǎng)優(yōu)化1.6優(yōu)化分配1.7優(yōu)化庫存1.8優(yōu)化充電1.9優(yōu)化發(fā)車1.10優(yōu)化覆蓋1.11車間調(diào)度優(yōu)化1.12優(yōu)化選址1.13生產(chǎn)調(diào)度優(yōu)化1.14優(yōu)化位置1.15優(yōu)化控制1.16優(yōu)化組合1.17水庫調(diào)度優(yōu)化1.18優(yōu)化設(shè)計1.19集裝箱船配載優(yōu)化1.20優(yōu)化成本1.21水泵組合優(yōu)化1.22醫(yī)療資源分配優(yōu)化1.23優(yōu)化電價1.24公交排班優(yōu)化1.25優(yōu)化布局1.26優(yōu)化參數(shù)1.27貨位優(yōu)化1.28可視域基站和無人機選址優(yōu)化1.29優(yōu)化吸波1.30優(yōu)化指派1.31智能交通燈優(yōu)化1.32優(yōu)化運行1.33優(yōu)化調(diào)配1.34優(yōu)化資源利用1.35智能分揀優(yōu)化1.36物流中心選址優(yōu)化1.37投資組合優(yōu)化1.38用水調(diào)度優(yōu)化1.39數(shù)據(jù)中心能源優(yōu)化1.40廣告投放優(yōu)化1.41廣告競價優(yōu)化1.42庫存管理優(yōu)化1.43供應(yīng)鏈優(yōu)化1.44能源效率優(yōu)化1.45網(wǎng)絡(luò)流量優(yōu)化1.46冷庫管理優(yōu)化1.47電壓控制優(yōu)化1.48資源共享優(yōu)化1.49優(yōu)化位置選址1.50生產(chǎn)線效率優(yōu)化2機器學(xué)習(xí)和深度學(xué)習(xí)分類與預(yù)測2.1機器學(xué)習(xí)和深度學(xué)習(xí)分類2.1.1CNN卷積神經(jīng)網(wǎng)絡(luò)分類2.1.2SVM支持向量機分類2.1.3XGBOOST分類2.1.4BiLSTM雙向長短時記憶神經(jīng)網(wǎng)絡(luò)分類2.1.5BP神經(jīng)網(wǎng)絡(luò)分類2.1.6RF隨機森林分類2.1.7KNN分類2.1.8MLP全連接神經(jīng)網(wǎng)絡(luò)分類2.1.9LSTM長短時記憶網(wǎng)絡(luò)分類2.1.10PNN概率神經(jīng)網(wǎng)絡(luò)分類2.1.11GRU門控循環(huán)單元分類2.1.12LSSVM最小二乘法支持向量機分類2.1.13SCN隨機配置網(wǎng)絡(luò)模型分類2.1.14RELM魯棒極限學(xué)習(xí)機分類2.1.15KELM混合核極限學(xué)習(xí)機分類2.1.16DBN深度置信網(wǎng)絡(luò)分類2.1.17ELMAN遞歸神經(jīng)網(wǎng)絡(luò)分類2.1.18DELM深度學(xué)習(xí)極限學(xué)習(xí)機分類2.1.19GRNN廣義回歸神經(jīng)網(wǎng)絡(luò)分類2.1.20ELM極限學(xué)習(xí)機分類2.1.21OVO多分類支持向量機2.1.22Adaboost分類2.1.23CatBoost分類2.1.24LightGBM分類2.1.25神經(jīng)自適應(yīng)共振分類(ART)2.1.26離散選擇模型分類(DCM)2.1.27閾值神經(jīng)網(wǎng)絡(luò)分類2.2機器學(xué)習(xí)和深度學(xué)習(xí)預(yù)測2.2.1ARMA自回歸滑動平均模型預(yù)測2.2.2ANFIS自適應(yīng)模糊神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.3ANN人工神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.4BF粒子濾波預(yù)測2.2.5DKELM回歸預(yù)測2.2.6ESN回聲狀態(tài)網(wǎng)絡(luò)預(yù)測2.2.7FNN前饋神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.8GMM高斯混合模型預(yù)測2.2.9GMDN預(yù)測2.2.10GRNN廣義回歸神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.11GRU門控循環(huán)單元預(yù)測2.2.12LSSVM最小二乘法支持向量機預(yù)測2.2.13RELM魯棒極限學(xué)習(xí)機預(yù)測2.2.14RF隨機森林預(yù)測2.2.15RBF徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.16RNN循環(huán)神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.17RVM相關(guān)向量機預(yù)測2.2.18SVM支持向量機預(yù)測2.2.19TCN時間卷積神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.20XGBoost回歸預(yù)測2.2.21模糊預(yù)測2.2.22奇異譜分析方法SSA時間序列預(yù)測2.2.23SARIMA季節(jié)性自回歸綜合滑動平均模型預(yù)測2.2.24Prophet模型時間序列預(yù)測2.2.25LightGBM回歸預(yù)測2.2.26ARIMA-GARCH組合預(yù)測2.2.27深度多層感知機預(yù)測2.2.28Transformer時間序列預(yù)測2.2.29Seq2Seq模型預(yù)測2.2.30SARIMA-LSTM混合模型預(yù)測2.2.31自編碼器預(yù)測2.2.32LMS最小均方算法預(yù)測2.2.33BiLSTM雙向長短時記憶神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.34BLS寬度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.35BP神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.36CNN卷積神經(jīng)網(wǎng)絡(luò)預(yù)測2.2.37DBN深度置信網(wǎng)絡(luò)預(yù)測2.2.38DELM深度學(xué)習(xí)極限學(xué)習(xí)機預(yù)測2.2.39LSTM長短時記憶網(wǎng)絡(luò)預(yù)測2.2.40模型集成預(yù)測2.2.41高維數(shù)據(jù)預(yù)測2.2.42多變量時間序列預(yù)測2.3機器學(xué)習(xí)和深度學(xué)習(xí)實際應(yīng)用預(yù)測CPI指數(shù)預(yù)測PM2.5濃度預(yù)測SOC預(yù)測產(chǎn)量預(yù)測車位預(yù)測蟲情預(yù)測帶鋼厚度預(yù)測電池健康狀態(tài)預(yù)測電力負荷預(yù)測房價預(yù)測腐蝕率預(yù)測故障診斷預(yù)測光伏功率預(yù)測軌跡預(yù)測航空發(fā)動機壽命預(yù)測匯率預(yù)測混凝土強度預(yù)測加熱爐爐溫預(yù)測價格預(yù)測交通流預(yù)測居民消費指數(shù)預(yù)測空氣質(zhì)量預(yù)測糧食溫度預(yù)測氣溫預(yù)測清水值預(yù)測失業(yè)率預(yù)測用電量預(yù)測運輸量預(yù)測制造業(yè)采購經(jīng)理指數(shù)預(yù)測產(chǎn)品推薦系統(tǒng)庫存需求預(yù)測員工離職預(yù)測網(wǎng)絡(luò)入侵檢測金融欺詐檢測社交媒體情緒預(yù)測自然災(zāi)害預(yù)測圖像分割預(yù)測視頻行為預(yù)測心電異常預(yù)測腦電波分類汽車故障預(yù)測智能家居用電量預(yù)測3圖像處理方面3.1圖像邊緣檢測3.2圖像處理3.3圖像分割3.4圖像分類3.5圖像跟蹤3.6圖像加密解密3.7圖像檢索3.8圖像配準3.9圖像拼接3.10圖像評價3.11圖像去噪3.12圖像融合3.13圖像識別3.13.1表盤識別3.13.2車道線識別3.13.3車輛計數(shù)3.13.4車輛識別3.13.5車牌識別3.13.6車位識別3.13.7尺寸檢測3.13.8答題卡識別3.13.9電器識別3.13.10跌倒檢測3.13.11動物識別3.13.12二維碼識別3.13.13發(fā)票識別3.13.14服裝識別3.13.15漢字識別3.13.16紅綠燈識別3.13.17虹膜識別3.13.18火災(zāi)檢測3.13.19疾病分類3.13.20交通標志識別3.13.21卡號識別3.13.22口罩識別3.13.23裂縫識別3.13.24目標跟蹤3.13.25疲勞檢測3.13.26旗幟識別3.13.27青草識別3.13.28人臉識別3.13.29人民幣識別3.13.30身份證識別3.13.31手勢識別3.13.32數(shù)字字母識別3.13.33手掌識別3.13.34樹葉識別3.13.35水果識別3.13.36條形碼識別3.13.37溫度檢測3.13.38瑕疵檢測3.13.39芯片檢測3.13.40行為識別3.13.41驗證碼識別3.13.42藥材識別3.13.43硬幣識別3.13.44郵政編碼識別3.13.45紙牌識別3.13.46指紋識別3.14圖像修復(fù)3.15圖像壓縮3.16圖像隱寫3.17圖像增強3.18圖像重建3.19圖像特征提取3.20圖像形態(tài)學(xué)處理3.21圖像旋轉(zhuǎn)3.22圖像反轉(zhuǎn)3.23圖像去模糊3.24圖像顏色調(diào)整3.25多尺度分解3.26圖像超分辨率3.27背景分離3.28熱成像分析4路徑規(guī)劃方面4.1旅行商問題(TSP)4.1.1單旅行商問題(TSP)4.1.2多旅行商問題(MTSP)4.2車輛路徑問題(VRP)4.2.1車輛路徑問題(VRP)4.2.2帶容量的車輛路徑問題(CVRP)4.2.3帶容量+時間窗+距離車輛路徑問題(DCTWVRP)4.2.4帶容量+距離車輛路徑問題(DCVRP)4.2.5帶距離的車輛路徑問題(DVRP)4.2.6帶充電站+時間窗車輛路徑問題(ETWVRP)4.2.7帶多種容量的車輛路徑問題(MCVRP)4.2.8帶距離的多車輛路徑問題(MDVRP)4.2.9同時取送貨的車輛路徑問題(SDVRP)4.2.10帶時間窗+容量的車輛路徑問題(TWCVRP)4.2.11帶時間窗的車輛路徑問題(TWVRP)4.3多式聯(lián)運運輸問題4.4機器人路徑規(guī)劃4.4.1避障路徑規(guī)劃4.4.2迷宮路徑規(guī)劃4.4.3柵格地圖路徑規(guī)劃4.5配送路徑規(guī)劃4.5.1冷鏈配送路徑規(guī)劃4.5.2外賣配送路徑規(guī)劃4.5.3口罩配送路徑規(guī)劃4.5.4藥品配送路徑規(guī)劃4.5.5含充電站配送路徑規(guī)劃4.5.6連鎖超市配送路徑規(guī)劃4.5.7車輛協(xié)同無人機配送路徑規(guī)劃4.6無人機路徑規(guī)劃4.6.1飛行器仿真4.6.2無人機飛行作業(yè)4.6.3無人機軌跡跟蹤4.6.4無人機集群仿真4.6.5無人機三維路徑規(guī)劃4.6.6無人機編隊4.6.7無人機協(xié)同任務(wù)4.6.8無人機任務(wù)分配4.7無人駕駛路徑規(guī)劃4.8智能停車路徑規(guī)劃4.9多目標路徑規(guī)劃4.10動態(tài)路徑優(yōu)化4.11即時路徑更新4.12混合動力汽車路徑規(guī)劃4.13高速公路車輛協(xié)調(diào)4.14礦山運輸路徑規(guī)劃4.15智能倉儲路徑規(guī)劃5語音處理5.1語音情感識別5.2聲源定位5.3特征提取5.4語音編碼5.5語音處理5.6語音分離5.7語音分析5.8語音合成5.9語音加密5.10語音去噪5.11語音識別5.12語音壓縮5.13語音隱藏5.14語音關(guān)鍵詞檢測5.15語音身份驗證5.16語音情緒轉(zhuǎn)換5.17語音喚醒詞檢測5.18語音轉(zhuǎn)寫5.19聲紋識別5.20語音分類5.21語音降噪算法6元胞自動機方面6.1元胞自動機病毒仿真6.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論