版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省曲靖市宣威市九中高一數(shù)學(xué)第一學(xué)期期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.我國東漢末數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用一幅“弦圖”給出了勾股定理的證明,后人稱其為“趙爽弦圖”,它是由四個全等的直角三角形與一個小正方形拼成的一個大正方形,如圖所示.在“趙爽弦圖”中,若,則()A. B.C. D.2.已知函數(shù)部分圖象如圖所示,則A. B.C. D.3.已知的定義域為,則函數(shù)的定義域為A. B.C. D.4.一個幾何體的三視圖如圖所示,則該幾何體的表面積為A. B.C. D.5.下列等式中,正確的是()A. B.C. D.6.已知函數(shù)對任意實數(shù)都滿足,若,則A.-1 B.0C.1 D.27.已知角的終邊過點,若,則A.-10 B.10C. D.8.下列函數(shù)為奇函數(shù)的是A. B.C. D.9.已知冪函數(shù)是偶函數(shù),則函數(shù)恒過定點A. B.C. D.10.函數(shù)的圖象的一個對稱中心為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.冪函數(shù)為偶函數(shù)且在區(qū)間上單調(diào)遞減,則________,________.12.若,,.,則a,b,c的大小關(guān)系用“”表示為________________.13.已知與之間的一組數(shù)據(jù)如下,且它們之間存在較好的線性關(guān)系,則與的回歸直線方程必過定點__________14.已知角的終邊經(jīng)過點,則的值為_______________.15.若,則的最小值為__________.16.某醫(yī)藥研究所研發(fā)一種新藥,如果成年人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量y(微克)與時間t(時)之間近似滿足如圖所示的關(guān)系.若每毫升血液中含藥量不低于0.5微克時,治療疾病有效,則服藥一次治療疾病的有效時間為___________小時.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù)(1)求的最小正周期;(2)若函數(shù)的圖象向右平移個單位后得到函數(shù)的圖象,求函數(shù)在上的最值18.已知奇函數(shù).(1)求值;(2)若函數(shù)的零點是大于的實數(shù),試求的范圍.19.已知定義在R上的函數(shù)滿足:①對任意實數(shù),,均有;②;③對任意,(1)求的值,并判斷的奇偶性;(2)對任意的x∈R,證明:;(3)直接寫出的所有零點(不需要證明)20.已知集合,集合,集合.(1)求;(2)若,求實數(shù)的值取范圍.21.對于函數(shù),若在定義域內(nèi)存在實數(shù),滿足,則稱“局部中心函數(shù)”.(1)已知二次函數(shù)(),試判斷是否為“局部中心函數(shù)”,并說明理由;(2)若是定義域為上的“局部中心函數(shù)”,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】由題,根據(jù)向量加減數(shù)乘運算得,進而得.【詳解】解:因為在“趙爽弦圖”中,若,所以,所以,所以,所以.故選:B2、C【解析】由圖可以得到周期,然后利用周期公式求,再將特殊點代入即可求得的表達式,結(jié)合的范圍即可確定的值.【詳解】由圖可知,,則,所以,則.將點代入得,即,解得,因為,所以.答案為C.【點睛】已知圖像求函數(shù)解析式的問題:(1):一般由圖像求出周期,然后利用公式求解.(2):一般根據(jù)圖像的最大值或者最小值即可求得.(3):一般將已知點代入即可求得.3、B【解析】因為函數(shù)的定義域為,故函數(shù)有意義只需即可,解得,選B考點:1、函數(shù)的定義域的概念;2、復(fù)合函數(shù)求定義域4、D【解析】該幾何體為半圓柱,底面為半徑為1的半圓,高為2,因此表面積為,選D.5、D【解析】按照指數(shù)對數(shù)的運算性質(zhì)依次判斷4個選項即可.【詳解】對于A,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,,錯誤;對于B,,錯誤;對于C,,錯誤;對于D,,正確.故選:D.6、A【解析】由題意首先確定函數(shù)的周期性,然后結(jié)合所給的關(guān)系式確定的值即可.【詳解】由可得,據(jù)此可得:,即函數(shù)是周期為2的函數(shù),且,據(jù)此可知.本題選擇A選項.【點睛】本題主要考查函數(shù)的周期性及其應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.7、A【解析】因為角的終邊過點,所以,得,故選A.8、D【解析】函數(shù)是非奇非偶函數(shù);和是偶函數(shù);是奇函數(shù),故選D考點:函數(shù)的奇偶性9、D【解析】根據(jù)冪函數(shù)和偶函數(shù)的定義可得的值,進而可求得過的定點.【詳解】因為是冪函數(shù),所以得或,又偶函數(shù),所以,函數(shù)恒過定點.故選:.【點睛】本題主要考查的是冪函數(shù)和偶函數(shù)的定義,以及對數(shù)函數(shù)性質(zhì)的應(yīng)用,是基礎(chǔ)題.10、C【解析】根據(jù)正切函數(shù)的對稱中心為,可求得函數(shù)y圖象的一個對稱中心【詳解】由題意,令,,解得,,當(dāng)時,,所以函數(shù)的圖象的一個對稱中心為故選C【點睛】本題主要考查了正切函數(shù)的圖象與性質(zhì)的應(yīng)用問題,其中解答中熟記正切函數(shù)的圖象與性質(zhì),準(zhǔn)確計算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、(1).或3(2).4【解析】根據(jù)題意可得:【詳解】區(qū)間上單調(diào)遞減,,或3,當(dāng)或3時,都有,,.故答案為:或3;4.12、cab【解析】根據(jù)指數(shù)函數(shù)的單調(diào)性以及對數(shù)函數(shù)的單調(diào)性分別判斷出的取值范圍,從而可得結(jié)果【詳解】,即;,即;,即,綜上可得,故答案為:.【點睛】方法點睛:解答比較大小問題,常見思路有兩個:一是判斷出各個數(shù)值所在區(qū)間(一般是看三個區(qū)間);二是利用函數(shù)的單調(diào)性直接解答;數(shù)值比較多的比大小問題也可以兩種方法綜合應(yīng)用.13、【解析】因為與的回歸直線方程必過定點則與的回歸直線方程必過定點.即答案為.14、【解析】到原點的距離.考點:三角函數(shù)的定義.15、【解析】整理代數(shù)式滿足運用基本不等式結(jié)構(gòu)后,用基本不等式求最小值.【詳解】∵∴當(dāng)且僅當(dāng),時,取最小值.故答案為:【點睛】用基本不等式求最值要注意“一正、二定、三相等”,若不能取等,則要改變求最值的方法.16、【解析】根據(jù)圖象求出函數(shù)的解析式,然后由已知構(gòu)造不等式,解不等式即可得解.【詳解】當(dāng)時,函數(shù)圖象是一個線段,由于過原點與點,故其解析式為,當(dāng)時,函數(shù)的解析式為,因為在曲線上,所以,解得,所以函數(shù)的解析式為,綜上,,由題意有或,解得,所以,所以服藥一次治療疾病有效時間為個小時,故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)最大值為,最小值為.【解析】(1)利用輔助角公式化簡f(x)解析式即可根據(jù)正弦型函數(shù)的周期求解;(2)求出g(x)解析式,根據(jù)正弦型函數(shù)的性質(zhì)可求其在上的最值.【小問1詳解】,故函數(shù)的最小正周期;【小問2詳解】,,∴,故,18、(1)(2)【解析】(1)由奇函數(shù)的定義可得,即,化簡即可得答案;(2)原問題等價于,從而有函數(shù)的值域即為的范圍.小問1詳解】解:因函數(shù)為奇函數(shù),所以,即,所以,因為在上單調(diào)遞增,所以,即,解得;【小問2詳解】解:,由題意,,即,因為,所以,所以,又在上單調(diào)遞增,所以,所以的范圍為.19、(1)=2,f(x)為偶函數(shù);(2)證明見解析;(3),.【解析】(1)令x=y(tǒng)=0可求f(0);令x=y(tǒng)=1可求f(2);令x=0可求奇偶性;(2)令y=1即可證明;(3)(1),是以4為周期的周期函數(shù),由偶函數(shù)的性質(zhì)可得,從而可得的所有零點【小問1詳解】∵對任意實數(shù),,均有,∴令,則,可得,∵對任意,,,∴f(0)>0,∴;令,則;∴;∵f(x)定義域為R關(guān)于原點對稱,且令時,,∴是R上的偶函數(shù);【小問2詳解】令,則,則,∴,即;【小問3詳解】(1),且是以4為周期的周期的偶函數(shù),由偶函數(shù)的性質(zhì)可得,從而可得f(-1)=(1)=f(3)=f(5)=…=0,故f(x)的零點為奇數(shù),即f(x)所有零點為,.20、(1)或;(2).【解析】(1)根據(jù)一元二次不等式的解法求出集合、,即可求出;(2)由,可知,得到不等式組,即得.【小問1詳解】∵,,,或,∴或;【小問2詳解】∵,,由,得,,解得,∴實數(shù)的值取范圍為.21、(1)為“局部中心函數(shù)”,理由詳見解題過程;(2)【解析】(1)判斷是否為“局部中心函數(shù)”,即判斷方程是否有解,若有解,則說明是“局部中心函數(shù)”,否則說明不是“局部中心函數(shù)”;(2)條件是定義域為上的“局部中心函數(shù)”可轉(zhuǎn)化為方程有解,再利用整體思路得出結(jié)果.【詳解】解:(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度無人駕駛送餐車合作協(xié)議3篇
- 幼兒園生活規(guī)則課程設(shè)計
- 早教掛窗簾課程設(shè)計
- 2024年某旅游景點與旅游團組織合同
- 新媒體宣傳合同
- 公司借款協(xié)議書模板
- 施工合同補充協(xié)議修改的探討與思考
- 招標(biāo)公告緊急排煙窗采購
- 銀行房產(chǎn)抵押借款合同樣本
- 招標(biāo)文件聯(lián)系方式一覽
- 低代碼開發(fā)智慧樹知到期末考試答案章節(jié)答案2024年南華大學(xué)
- 2024年春季國開《學(xué)前教育科研方法》期末大作業(yè)(參考答案)
- 兒童故事:約瑟夫有件舊外套課件
- 2023年9月新《醫(yī)療器械分類目錄》-自2023年8月1日起施行
- 水池滿水試驗報告
- 兩班倒排班表excel模板
- 數(shù)學(xué)說題大賽評分標(biāo)準(zhǔn)
- 人教版高中英語必修5_unit2The_united_Kingdom_Reading
- 哈汽東芝型超超臨界1000MW汽輪機低壓缸動靜碰磨故障分析與對策
- 溫州市房屋租賃合同-通用版
- 醫(yī)源性冠狀動脈夾層的識別與防治
評論
0/150
提交評論