版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省教育綠色評價聯(lián)盟2025屆高二數(shù)學第一學期期末學業(yè)水平測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)在單調遞增的一個必要不充分條件是()A. B.C. D.2.已知直線過點,當直線與圓有兩個不同的交點時,其斜率的取值范圍是()A. B.C. D.3.若,則下列不等式①;②;③;④中,正確的不等式有()A.0個 B.1個C.2個 D.3個4.在棱長為1的正方體中,是線段上一個動點,則下列結論正確的有()A.不存在點使得異面直線與所成角為90°B.存在點使得異面直線與所成角為45°C.存在點使得二面角的平面角為45°D.當時,平面截正方體所得的截面面積為5.若正實數(shù)、滿足,且不等式有解,則實數(shù)取值范圍是()A.或 B.或C. D.6.如圖所示的程序框圖,閱讀下面的程序框圖,則輸出的S=()A.14 B.20C.30 D.557.今天是星期四,經過天后是星期()A.三 B.四C.五 D.六8.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.在△ABC中,角A,B,C的對邊分別為a,b,c,若,則△ABC()A.一定是銳角三角形 B.一定是直角三角形C.一定是鈍角三角形 D.是銳角或直角三角形10.已知、是平面直角坐標系上的直線,“與的斜率相等”是“與平行”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分條件也非必要條件11.圓關于直線對稱,則的最小值是()A. B.C. D.12.“,”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.直線與圓相交于A,B兩點,則的最小值為__________.14.已知、是空間內兩個單位向量,且,如果空間向量滿足,且,,則對于任意的實數(shù)、,的最小值為______15.已知數(shù)列則是這個數(shù)列的第________項.16.已知對任意正實數(shù)m,n,p,q,有如下結論成立:若,則有成立,現(xiàn)已知橢圓上存在一點P,,為其焦點,在中,,,則橢圓的離心率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為F,直線l過點(1)若點F到直線l的距離為,求直線l的斜率;(2)設A,B為拋物線上兩點,且AB不與x軸垂直,若線段AB的垂直平分線恰過點M,求證:線段AB中點的橫坐標為定值18.(12分)(1)求函數(shù)的單調區(qū)間.(2)用向量方法證明:已知直線l,a和平面,,,,求證:.19.(12分)已知函數(shù)(1)當時,求曲線在點處的切線方程;(2)若對任意的,恒成立,求實數(shù)a的取值范圍20.(12分)已知圓C的圓心在直線上,且經過點和(1)求圓C的標準方程;(2)若過點的直線l與圓C交于A,B兩點,且,求直線l的方程21.(12分)已知數(shù)列中,,且滿足(1)求證數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;(2)求數(shù)列的前n項和22.(10分)書籍是精神世界的入口,閱讀讓精神世界閃光,閱讀逐漸成為許多人的一種生活習慣,每年4月23日為世界讀書日.某研究機構為了解當?shù)啬贻p人的閱讀情況,通過隨機抽樣調查了100位年輕人,對這些人每天的閱讀時間(單位:分鐘)進行統(tǒng)計,得到樣本的頻率分布直方圖,如圖所示:(1)求的值;(2)為了進一步了解年輕人的閱讀方式,研究機構采用分層抽樣的方法從每天閱讀時間位于,和的年輕人中抽取5人,再從中任選2人進行調查,求其中至少有1人每天閱讀時間位于的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】求出導函數(shù),由于函數(shù)在區(qū)間單調遞增,可得在區(qū)間上恒成立,求出的范圍,再根據(jù)充分必要條件的定義即可判斷得解.【詳解】由題得,函數(shù)在區(qū)間單調遞增,在區(qū)間上恒成立,而在區(qū)間上單調遞減,選項中只有是的必要不充分條件.選項AC是的充分不必要條件,選項B是充要條件.故選:D2、A【解析】設直線方程,利用圓與直線的關系,確定圓心到直線的距離小于半徑,即可求得斜率范圍.【詳解】如下圖:設直線l的方程為即圓心為,半徑是1又直線與圓有兩個不同的交點故選:A3、C【解析】由條件,可得,利用不等式的性質和基本不等式可判斷①、②、③、④中不等式的正誤,得出答案.【詳解】因為,所以.因此,且,且②、③不正確.所以,所以①正確,由得、均為正數(shù),所以,(由條件,所以等號不成立),所以④正確.故選:C.4、D【解析】由正方體的性質可將異面直線與所成的角可轉化為直線與所成角,而當為的中點時,可得,可判斷A;與或重合時,直線與所成的角最小可判斷B;當與重合時,二面角的平面角最小,通過計算可判斷C;過作,交于,交于點,由題意可得四邊形即為平面截正方體所得的截面,且四邊形是等腰梯形,然后利用已知數(shù)據(jù)計算即可判斷D.【詳解】異面直線與所成的角可轉化為直線與所成角,當為中點時,,此時與所成的角為90°,所以A錯誤;當與或重合時,直線與所成角最小,為60°,所以B錯誤;當與重合時,二面角的平面角最小,,所以,所以C錯誤;對于D,過作,交于,交于點,因為,所以、分別是、的中點,又,所以,四邊形即為平面截正方體所得的截面,因為,且,所以四邊形是等腰梯形,作交于點,所以,,所以梯形的面積為,所以D正確.故選:D.5、A【解析】將代數(shù)式與相乘,展開后利用基本不等式可求得的最小值,可得出關于實數(shù)的不等式,解之即可.【詳解】因為正實數(shù)、滿足,則,即,所以,,當且僅當時,即當時,等號成立,即的最小值為,因為不等式有解,則,即,即,解得或.故選:A.II卷6、C【解析】經分析為直到型循環(huán)結構,按照循環(huán)結構進行執(zhí)行,當滿足跳出的條件時即可輸出值【詳解】解:第一次循環(huán)S=1,i=2;第二次循環(huán)S=1+22=5,i=3;第三次循環(huán)S=5+32=14,i=4;第四次循環(huán)S=14+42=30,i=5;此時5>4,跳出循環(huán),故輸出的值為30故選:C.7、C【解析】求出二項式定理的通項公式,得到除以7余數(shù)是1,然后利用周期性進行計算即可【詳解】解:一個星期的周期是7,則,即除以7余數(shù)是1,即今天是星期四,經過天后是星期五,故選:8、A【解析】根據(jù)充分、必要條件間的推出關系,判斷“x>1”與“x>0”的關系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.9、C【解析】由余弦定理確定角的范圍,從而判斷出三角形形狀【詳解】由得-cosC>0,所以cosC<0,從而C為鈍角,因此△ABC一定是鈍角三角形.故選:C10、D【解析】根據(jù)直線平行與直線斜率的關系,即可求解.【詳解】解:與的斜率相等”,“與可能重合,故前者不可以推出后者,若與平行,與的斜率可能都不存在,故后者不可以推出前者,故前者是后者的既非充分條件也非必要條件,故選:D.11、C【解析】先求出圓的圓心坐標,根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關于直線對稱,該直線經過圓心,即,,,當且僅當,即時取等號,故選:C.12、A【解析】由正切函數(shù)性質,應用定義法判斷條件間充分、必要關系.【詳解】當,,則,當時,,.∴“,”是“”的充分不必要條件.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】直線過定點,圓心,當時,取得最小值,再由勾股定理即可求解.【詳解】由,得,由,得直線過定點,且在圓的內部,由圓可得圓心,半徑,當時,取得最小值,圓心與定點的距離為,則的最小值為.故答案為:.14、【解析】根據(jù)已知可設,,,根據(jù)已知條件求出、、的值,將向量用坐標加以表示,利用空間向量的模長公式可求得的最小值.【詳解】因為、是空間內兩個單位向量,且,所以,,因為,則,不妨設,,設,則,,解得,則,因為,可得,則,所以,,當且僅當時,即當時,等號成立,因此,對于任意的實數(shù)、,的最小值為.故答案為:.15、12【解析】根據(jù)被開方數(shù)的特點求出數(shù)列的通項公式,最后利用通項公式進行求解即可.【詳解】數(shù)列中每一項被開方數(shù)分別為:6,10,14,18,22,…,因此這些被開方數(shù)是以6為首項,4為公差的等差數(shù)列,設該等差數(shù)列為,其通項公式為:,設數(shù)列為,所以,于是有,故答案為:16、【解析】根據(jù)正弦定理,結合題意,列出方程,代入數(shù)據(jù),化簡即可得答案.詳解】由題意得:,所以,所以,解得.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見詳解.【解析】(1)設出直線方程,根據(jù)點到直線的距離公式,即可求得直線;(2)設出直線方程,聯(lián)立拋物線方程,根據(jù)韋達定理,利用直線垂直,從而得到的斜率關系,即可證明.【詳解】(1)由條件知直線l的斜率存在,設為,則直線l的方程為:,即從而焦點到直線l的距離為,平方化簡得:,故直線斜率為:.(2)證明:設直線AB的方程為,聯(lián)立拋物線方程,消元得:設,,線段AB的中點為,故因為,將M點坐標代入后整理得:即可得:故為定值.即證.【點睛】本題考查拋物線中的定值問題,涉及直線方程的求解,韋達定理,屬綜合基礎題.18、(1)的單調減區(qū)間為和,單調增區(qū)間為;(2)證明見解析.【解析】(1)求出導函數(shù),由得增區(qū)間,由得減區(qū)間;(2)說明直線方向向量與平行的法向量垂直后可得【詳解】(1)解:定義域為R,,,解得,.當或時,,當時,.所以的單調減區(qū)間為和,單調增區(qū)間為.(2)證明:在直線a上取非零向量,因為,所以是直線l的方向向量,設是平面的一個法向量,因為,所以.又,所以.19、(1)(2)【解析】(1)先求導,由到數(shù)值求出斜率,最后根據(jù)點斜式求出方程即可;(2)采用分離常數(shù)法,轉化為求新函數(shù)的值域即可.【小問1詳解】時,,,則,,所以在點處的切線方程為,即【小問2詳解】對任意的,恒成立,即,對任意的,令,即,則,因為,,所以當時,,在區(qū)間上單調遞減,當時,,在區(qū)間上單調遞增,則,所以20、(1)(2)或【解析】(1)點和的中垂線經過圓心,兩直線聯(lián)立方程得圓心坐標,再利用兩點間距離公式求解半徑.(2)已知弦長,求解直線方程,分類討論斜率是否存在.小問1詳解】點和的中點為,,所以中垂線的,利用點斜式得方程為,聯(lián)立方程得圓心坐標為,所以圓C的標準方程為.【小問2詳解】當過點的直線l斜率不存在時,直線方程為,此時弦長,符合題意.當過點的直線l斜率存在時,設直線方程為,化簡得,弦心距,所以,解得,所以直線方程為.綜上所述直線方程為或.21、(1)證明見解析;;(2).【解析】(1)根據(jù)等差數(shù)列的定義證明為常數(shù)即可;(2)利用錯位相減法即可求和.【小問1詳解】由得,,∴數(shù)列是以1為首項,1為公差的等差數(shù)列,∴,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四年級數(shù)學(小數(shù)加減運算)計算題專項練習與答案匯編
- 一年級數(shù)學(上)計算題專項練習匯編
- 教育領域實驗儀器的創(chuàng)新與發(fā)展
- 二零二五版房地產投資信托基金還款協(xié)議范本3篇
- 2025年外研版八年級科學下冊階段測試試卷含答案
- 工程分包安全生產合同
- 2025年滬教版九年級科學下冊月考試卷含答案
- 上海交通大學思源計劃項目協(xié)議書
- 攝像機影視器材租賃合同范本
- 酒店勞動合同范本
- 《采礦工程英語》課件
- NB-T31045-2013風電場運行指標與評價導則
- NB-T+10488-2021水電工程砂石加工系統(tǒng)設計規(guī)范
- 天津市和平區(qū)2023-2024學年七年級下學期6月期末歷史試題
- 《中電聯(lián)團體標準-220kV變電站并聯(lián)直流電源系統(tǒng)技術規(guī)范》
- 微型消防站消防員培訓內容
- (完整版)鋼筋加工棚驗算
- 焊接工藝的過程監(jiān)測與質量分析
- 年夜飯營養(yǎng)分析報告
- 華電行測題庫及答案2024
- 江西省萍鄉(xiāng)市2023-2024學年九年級上學期期末數(shù)學試題(含答案)
評論
0/150
提交評論