版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省部分重點中學2023-2024學年高三第一次段考數學試題試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.12.已知F是雙曲線(k為常數)的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.23.函數的大致圖象為A. B.C. D.4.已知是虛數單位,則()A. B. C. D.5.某調查機構對全國互聯(lián)網行業(yè)進行調查統(tǒng)計,得到整個互聯(lián)網行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網行業(yè)崗位分布條形圖,則下列結論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網行業(yè)中從事技術崗位的人數超過總人數的C.互聯(lián)網行業(yè)中從事運營崗位的人數90后比80前多D.互聯(lián)網行業(yè)中從事技術崗位的人數90后比80后多6.已知函數,,則的極大值點為()A. B. C. D.7.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.8.若,則函數在區(qū)間內單調遞增的概率是()A.B.C.D.9.設是虛數單位,則()A. B. C. D.10.已知集合,集合,則等于()A. B.C. D.11.已知,則不等式的解集是()A. B. C. D.12.在滿足,的實數對中,使得成立的正整數的最大值為()A.5 B.6 C.7 D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知復數(為虛數單位)為純虛數,則實數的值為_____.14.拋物線上到其焦點的距離為的點的個數為________.15.設命題:,,則:__________.16.在《九章算術》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,內切球半徑為,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是各項均為正數的等比數列,,且,,成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,為數列的前項和,記,證明:.18.(12分)等差數列的公差為2,分別等于等比數列的第2項,第3項,第4項.(1)求數列和的通項公式;(2)若數列滿足,求數列的前2020項的和.19.(12分)已知數列和,前項和為,且,是各項均為正數的等比數列,且,.(1)求數列和的通項公式;(2)求數列的前項和.20.(12分)如圖,三棱錐中,(1)證明:面面;(2)求二面角的余弦值.21.(12分)已知函數的最大值為2.(Ⅰ)求函數在上的單調遞減區(qū)間;(Ⅱ)中,,角所對的邊分別是,且,求的面積.22.(10分)已知數列,其前項和為,若對于任意,,且,都有.(1)求證:數列是等差數列(2)若數列滿足,且等差數列的公差為,存在正整數,使得,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設,將表示成關于的函數,再求函數的最值,即可得答案.【詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設,則,.因為,所以,所以,當時,等號成立.此時EH與ED重合,所以,.故選:B.【點睛】本題考查空間中點到面的距離的最值,考查函數與方程思想、轉化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應用.2、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.3、A【解析】
因為,所以函數是偶函數,排除B、D,又,排除C,故選A.4、B【解析】
根據復數的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數的乘法,熟記運算法則即可,屬于基礎題型.5、D【解析】
根據兩個圖形的數據進行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯(lián)網行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個互聯(lián)網行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網行業(yè)崗位分布條形圖得到:,互聯(lián)網行業(yè)從業(yè)技術崗位的人數超過總人數的,所以是正確的;在C中,由整個互聯(lián)網行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網行業(yè)崗位分別條形圖得到:,互聯(lián)網行業(yè)從事運營崗位的人數90后比80后多,所以是正確的;在D中,互聯(lián)網行業(yè)中從事技術崗位的人數90后所占比例為,所以不能判斷互聯(lián)網行業(yè)中從事技術崗位的人數90后比80后多.故選:D.【點睛】本題主要考查了命題的真假判定,以及統(tǒng)計圖表中餅狀圖和條形圖的性質等基礎知識的應用,著重考查了推理與運算能力,屬于基礎題.6、A【解析】
求出函數的導函數,令導數為零,根據函數單調性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調遞增,在單調遞減,在單調遞增,故的極大值點為.故選:A.【點睛】本題考查利用導數求函數的極值點,屬基礎題.7、A【解析】
由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.8、B【解析】函數在區(qū)間內單調遞增,,在恒成立,在恒成立,,函數在區(qū)間內單調遞增的概率是,故選B.9、A【解析】
利用復數的乘法運算可求得結果.【詳解】由復數的乘法法則得.故選:A.【點睛】本題考查復數的乘法運算,考查計算能力,屬于基礎題.10、B【解析】
求出中不等式的解集確定出集合,之后求得.【詳解】由,所以,故選:B.【點睛】該題考查的是有關集合的運算的問題,涉及到的知識點有一元二次不等式的解法,集合的運算,屬于基礎題目.11、A【解析】
構造函數,通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數,是單調遞增函數,且向左移動一個單位得到,的定義域為,且,所以為奇函數,圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據函數的單調性和對稱性解不等式,屬于中檔題.12、A【解析】
由題可知:,且可得,構造函數求導,通過導函數求出的單調性,結合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設,則,令,則,令,則,故在上單調遞增,在上單調遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導數求函數單調性、極值和最值,以及運用構造函數法和放縮法,同時考查轉化思想和解題能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復數的乘法求解再根據純虛數的定義求解即可.【詳解】解:復數為純虛數,解得.故答案為:.【點睛】本題主要考查了根據復數為純虛數求解參數的問題,屬于基礎題.14、【解析】
設拋物線上任意一點的坐標為,根據拋物線的定義求得,并求出對應的,即可得出結果.【詳解】設拋物線上任意一點的坐標為,拋物線的準線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數為.故答案為:.【點睛】本題考查利用拋物線的定義求點的坐標,考查計算能力,屬于基礎題.15、,【解析】
存在符號改任意符號,結論變相反.【詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【點睛】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結論:對于一般命題的否定只需直接否定結論即可.16、【解析】
該陽馬補形所得到的長方體的對角線為外接球的直徑,由此能求出,內切球在側面內的正視圖是的內切圓,從而內切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側棱底面,且,,設該陽馬的外接球半徑為,該陽馬補形所得到的長方體的對角線為外接球的直徑,,,側棱底面,且底面為正方形,內切球在側面內的正視圖是的內切圓,內切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內切球的相關問題,補形法的運用,以及數學文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關鍵是能夠確定球心位置,以及選擇恰當的角度做出截面.球心位置的確定的方法有很多,主要有兩種:(1)補形法(構造法),通過補形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),;(Ⅱ)見解析【解析】
(Ⅰ)由,且成等差數列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】(Ⅰ)因為數列是各項均為正數的等比數列,,可設公比為q,,又成等差數列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.【點睛】本題主要考查等差等比數列的綜合應用,以及用裂項相消法求和并證明不等式,考查學生的運算求解能力和推理證明能力.18、(1),;(2).【解析】
(1)根據題意同時利用等差、等比數列的通項公式即可求得數列和的通項公式;(2)求出數列的通項公式,再利用錯位相減法即可求得數列的前2020項的和.【詳解】(1)依題意得:,所以,所以解得設等比數列的公比為,所以又(2)由(1)知,因為①當時,②由①②得,,即,又當時,不滿足上式,.數列的前2020項的和設③,則④,由③④得:,所以,所以.【點睛】本題考查等差數列和等比數列的通項公式、性質,錯位相減法求和,考查學生的邏輯推理能力,化歸與轉化能力及綜合運用數學知識解決問題的能力.考查的核心素養(yǎng)是邏輯推理與數學運算.是中檔題.19、(1),;(2).【解析】
(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達式,即可得出數列的通項公式,并設數列的公比為,根據題意列出和的方程組,解出這兩個量,然后利用等比數列的通項公式可求出;(2)求出數列的前項和,然后利用分組求和法可求出.【詳解】(1)當時,,當時,.也適合上式,所以,.設數列的公比為,則,由,兩式相除得,,解得,,;(2)設數列的前項和為,則,.【點睛】本題考查利用求,同時也考查了等比數列通項的計算,以及分組求和法的應用,考查計算能力,屬于中等題.20、(1)證明見解析(2)【解析】
(1)取中點,連結,證明平面得到答案.(2)如圖所示,建立空間直角坐標系,為平面的一個法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)取中點,連結,,,,,為直角,,平面,平面,∴面面.(2)如圖所示,建立空間直角坐標系,則,可取為平面的一個法向量.設平面的一個法向量為.則,其中,,不妨取,則..為銳二面角,∴二面角的余弦值為.【點睛】本題考查了面面垂直,二面角,意在考查學生的計算能力和空間想象能力.21、(Ⅰ)(Ⅱ)【解析】
(1)由題意,f(x)的最大值為所以而m>0,于是m=,f(x)=2sin(x+).由正弦函數的單調性可得x滿足即所以f(x)在[0,π]上的單調遞減區(qū)間為(2)設△ABC的外接圓半徑為R,由題意,得化簡得sinA+sinB=2sinAsinB.由正弦定理,得①由余弦定理,得a2+b2-ab=9,即(a+b)2-3ab-9=0②將
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度危險化學品儲存安全合同書模板3篇
- 教育領域中的農業(yè)科技應用與實踐
- 二零二五年度車庫門行業(yè)信息化建設與支持合同4篇
- 生物醫(yī)學工程專業(yè)人才需求與培養(yǎng)方案
- 二零二五年度尊享不過戶二手房買賣合同3篇
- 2025年度個人所得稅贍養(yǎng)老人專項附加扣除協(xié)議執(zhí)行細則3篇
- 2025年度個人二手房購房合同范本及稅費代繳服務協(xié)議3篇
- AI驅動的智能醫(yī)療設備進展報告
- 科技驅動的小學道德與法治教育變革
- 珠海廣東珠海市斗門區(qū)人民法院特邀調解員招聘10人筆試歷年參考題庫附帶答案詳解
- 口腔醫(yī)學中的人工智能應用培訓課件
- 工程質保金返還審批單
- 【可行性報告】2023年電動自行車項目可行性研究分析報告
- 五月天歌詞全集
- 商品退換貨申請表模板
- 實習單位鑒定表(模板)
- 六西格瑪(6Sigma)詳解及實際案例分析
- 機械制造技術-成都工業(yè)學院中國大學mooc課后章節(jié)答案期末考試題庫2023年
- 數字媒體應用技術專業(yè)調研方案
- 2023年常州市新課結束考試九年級數學試卷(含答案)
- 正常分娩 分娩機制 助產學課件
評論
0/150
提交評論