遼寧省朝陽(yáng)市朝陽(yáng)縣柳城高中2023-2024學(xué)年高三4月暑期摸底考試數(shù)學(xué)試題試卷_第1頁(yè)
遼寧省朝陽(yáng)市朝陽(yáng)縣柳城高中2023-2024學(xué)年高三4月暑期摸底考試數(shù)學(xué)試題試卷_第2頁(yè)
遼寧省朝陽(yáng)市朝陽(yáng)縣柳城高中2023-2024學(xué)年高三4月暑期摸底考試數(shù)學(xué)試題試卷_第3頁(yè)
遼寧省朝陽(yáng)市朝陽(yáng)縣柳城高中2023-2024學(xué)年高三4月暑期摸底考試數(shù)學(xué)試題試卷_第4頁(yè)
遼寧省朝陽(yáng)市朝陽(yáng)縣柳城高中2023-2024學(xué)年高三4月暑期摸底考試數(shù)學(xué)試題試卷_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省朝陽(yáng)市朝陽(yáng)縣柳城高中2023-2024學(xué)年高三4月暑期摸底考試數(shù)學(xué)試題試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.22.如圖,在平面四邊形ABCD中,若點(diǎn)E為邊CD上的動(dòng)點(diǎn),則的最小值為()A. B. C. D.3.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對(duì)于恒成立,則的取值范圍是A. B. C. D.4.已知命題,且是的必要不充分條件,則實(shí)數(shù)的取值范圍為()A. B. C. D.5.函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.6.等比數(shù)列的各項(xiàng)均為正數(shù),且,則()A.12 B.10 C.8 D.7.已知直線:過雙曲線的一個(gè)焦點(diǎn)且與其中一條漸近線平行,則雙曲線的方程為()A. B. C. D.8.已知若在定義域上恒成立,則的取值范圍是()A. B. C. D.9.已知雙曲線的一條漸近線為,圓與相切于點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.10.過拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.11.設(shè)全集,集合,,則集合()A. B. C. D.12.函數(shù)在的圖像大致為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的二項(xiàng)展開式中,所有項(xiàng)的系數(shù)的和為________14.某次足球比賽中,,,,四支球隊(duì)進(jìn)入了半決賽.半決賽中,對(duì)陣,對(duì)陣,獲勝的兩隊(duì)進(jìn)入決賽爭(zhēng)奪冠軍,失利的兩隊(duì)爭(zhēng)奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—?jiǎng)t隊(duì)獲得冠軍的概率為______.15.已知集合,,則__________.16.已知,滿足約束條件則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動(dòng)點(diǎn),求的最大值.18.(12分)選修4-5:不等式選講已知函數(shù)(Ⅰ)解不等式;(Ⅱ)對(duì)及,不等式恒成立,求實(shí)數(shù)的取值范圍.19.(12分)在中,為邊上一點(diǎn),,.(1)求;(2)若,,求.20.(12分)在中,角、、所對(duì)的邊分別為、、,且.(1)求角的大小;(2)若,的面積為,求及的值.21.(12分)某市環(huán)保部門對(duì)該市市民進(jìn)行了一次垃圾分類知識(shí)的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參加機(jī)會(huì),通過隨機(jī)抽樣,得到參與問卷調(diào)查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計(jì)結(jié)果如表所示:組別男235151812女051010713(1)若規(guī)定問卷得分不低于70分的市民稱為“環(huán)保關(guān)注者”,請(qǐng)完成答題卡中的列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過0.05的前提下,認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān)?(2)若問卷得分不低于80分的人稱為“環(huán)保達(dá)人”.視頻率為概率.①在我市所有“環(huán)保達(dá)人”中,隨機(jī)抽取3人,求抽取的3人中,既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率;②為了鼓勵(lì)市民關(guān)注環(huán)保,針對(duì)此次的調(diào)查制定了如下獎(jiǎng)勵(lì)方案:“環(huán)保達(dá)人”獲得兩次抽獎(jiǎng)活動(dòng);其他參與的市民獲得一次抽獎(jiǎng)活動(dòng).每次抽獎(jiǎng)獲得紅包的金額和對(duì)應(yīng)的概率.如下表:紅包金額(單位:元)1020概率現(xiàn)某市民要參加此次問卷調(diào)查,記(單位:元)為該市民參加間卷調(diào)查獲得的紅包金額,求的分布列及數(shù)學(xué)期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)已知函數(shù).(1)當(dāng)(為自然對(duì)數(shù)的底數(shù))時(shí),求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時(shí),求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力.2、A【解析】

分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點(diǎn)為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時(shí),上式取最小值,選A.點(diǎn)睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時(shí)利用向量共線轉(zhuǎn)化為函數(shù)求最值。3、A【解析】

根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對(duì)稱又在上是增函數(shù)在上是減函數(shù),即對(duì)于恒成立在上恒成立,即的取值范圍為:本題正確選項(xiàng):【點(diǎn)睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.4、D【解析】

求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實(shí)數(shù)的取值范圍為.故選:.【點(diǎn)睛】本題考查根據(jù)充分、必要條件求參數(shù)范圍,其思路方法:(1)解決此類問題一般是把充分條件、必要條件或充要條件轉(zhuǎn)化為集合之間的關(guān)系,然后根據(jù)集合之間關(guān)系列出關(guān)于參數(shù)的不等式(組)求解.(2)求解參數(shù)的取值范圍時(shí),一定要注意區(qū)間端點(diǎn)值的檢驗(yàn).5、B【解析】

對(duì)分類討論,當(dāng),函數(shù)在單調(diào)遞減,當(dāng),根據(jù)對(duì)勾函數(shù)的性質(zhì),求出單調(diào)遞增區(qū)間,即可求解.【詳解】當(dāng)時(shí),函數(shù)在上單調(diào)遞減,所以,的遞增區(qū)間是,所以,即.故選:B.【點(diǎn)睛】本題考查函數(shù)單調(diào)性,熟練掌握簡(jiǎn)單初等函數(shù)性質(zhì)是解題關(guān)鍵,屬于基礎(chǔ)題.6、B【解析】

由等比數(shù)列的性質(zhì)求得,再由對(duì)數(shù)運(yùn)算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì),考查對(duì)數(shù)的運(yùn)算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.7、A【解析】

根據(jù)直線:過雙曲線的一個(gè)焦點(diǎn),得,又和其中一條漸近線平行,得到,再求雙曲線方程.【詳解】因?yàn)橹本€:過雙曲線的一個(gè)焦點(diǎn),所以,所以,又和其中一條漸近線平行,所以,所以,,所以雙曲線方程為.故選:A.【點(diǎn)睛】本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.8、C【解析】

先解不等式,可得出,求出函數(shù)的值域,由題意可知,不等式在定義域上恒成立,可得出關(guān)于的不等式,即可解得實(shí)數(shù)的取值范圍.【詳解】,先解不等式.①當(dāng)時(shí),由,得,解得,此時(shí);②當(dāng)時(shí),由,得.所以,不等式的解集為.下面來求函數(shù)的值域.當(dāng)時(shí),,則,此時(shí);當(dāng)時(shí),,此時(shí).綜上所述,函數(shù)的值域?yàn)?,由于在定義域上恒成立,則不等式在定義域上恒成立,所以,,解得.因此,實(shí)數(shù)的取值范圍是.故選:C.【點(diǎn)睛】本題考查利用函數(shù)不等式恒成立求參數(shù),同時(shí)也考查了分段函數(shù)基本性質(zhì)的應(yīng)用,考查分類討論思想的應(yīng)用,屬于中等題.9、D【解析】

由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,,,.故選:D.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.10、B【解析】

利用拋物線的定義可得,,把線段AB中點(diǎn)的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點(diǎn)為F,設(shè)點(diǎn),由拋物線的定義可知,線段AB中點(diǎn)的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.【點(diǎn)睛】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.11、C【解析】∵集合,,∴點(diǎn)睛:本題是道易錯(cuò)題,看清所問問題求并集而不是交集.12、B【解析】

由分子、分母的奇偶性,易于確定函數(shù)為奇函數(shù),由的近似值即可得出結(jié)果.【詳解】設(shè),則,所以是奇函數(shù),圖象關(guān)于原點(diǎn)成中心對(duì)稱,排除選項(xiàng)C.又排除選項(xiàng)D;,排除選項(xiàng)A,故選B.【點(diǎn)睛】本題通過判斷函數(shù)的奇偶性,縮小考察范圍,通過計(jì)算特殊函數(shù)值,最后做出選擇.本題較易,注重了基礎(chǔ)知識(shí)、基本計(jì)算能力的考查.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

設(shè),令,的值即為所有項(xiàng)的系數(shù)之和?!驹斀狻吭O(shè),令,所有項(xiàng)的系數(shù)的和為。【點(diǎn)睛】本題主要考查二項(xiàng)式展開式所有項(xiàng)的系數(shù)的和的求法─賦值法。一般地,對(duì)于,展開式各項(xiàng)系數(shù)之和為,注意與“二項(xiàng)式系數(shù)之和”區(qū)分。14、0.18【解析】

根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計(jì)算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.15、【解析】

直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點(diǎn)睛】本題考查集合的交集運(yùn)算,是基礎(chǔ)題.16、1【解析】

先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點(diǎn)時(shí),取得最大值為:.故答案為:1.【點(diǎn)睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)【解析】試題分析:(1)由消去參數(shù),可得的普通方程,由可得的普通方程;(2)設(shè)為曲線上一點(diǎn),點(diǎn)到曲線的圓心的距離,結(jié)合可得最值,的最大值為,從而得解.試題解析:(1)的普通方程為.∵曲線的極坐標(biāo)方程為,∴曲線的普通方程為,即.(2)設(shè)為曲線上一點(diǎn),則點(diǎn)到曲線的圓心的距離.∵,∴當(dāng)時(shí),d有最大值.又∵P,Q分別為曲線,曲線上動(dòng)點(diǎn),∴的最大值為.18、(Ⅰ).(Ⅱ).【解析】

詳解:(Ⅰ)當(dāng)時(shí),由,解得;當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得.所以不等式的解集為.(Ⅱ)因?yàn)?,所?由題意知對(duì),,即,因?yàn)椋?,解?【點(diǎn)睛】⑴絕對(duì)值不等式解法的基本思路是:去掉絕對(duì)值號(hào),把它轉(zhuǎn)化為一般的不等式求解,轉(zhuǎn)化的方法一般有:①絕對(duì)值定義法;②平方法;③零點(diǎn)區(qū)域法.⑵不等式的恒成立可用分離變量法.若所給的不等式能通過恒等變形使參數(shù)與主元分離于不等式兩端,從而問題轉(zhuǎn)化為求主元函數(shù)的最值,進(jìn)而求出參數(shù)范圍.這種方法本質(zhì)也是求最值.一般有:①為參數(shù))恒成立②為參數(shù))恒成立.19、(1);(2)4【解析】

(1),利用兩角差的正弦公式計(jì)算即可;(2)設(shè),在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設(shè),,在中,由正弦定理得,,∴,∴,∵,∴∴.【點(diǎn)睛】本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學(xué)生的運(yùn)算求解能力,是一道容易題.20、(1)(2);【解析】

(1)由代入中計(jì)算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因?yàn)?,可得:,∴,或(舍),∵,?(2)由余弦定理,得所以,故,又,所以,所以.【點(diǎn)睛】本題考查二倍角公式以及正余弦定理解三角形,考查學(xué)生的運(yùn)算求解能力,是一道容易題.21、(1)不能;(2)①;②分布列見解析,.【解析】

(1)根據(jù)題目所給的數(shù)據(jù)可求2×2列聯(lián)表即可;計(jì)算K的觀測(cè)值K2,對(duì)照題目中的表格,得出統(tǒng)計(jì)結(jié)論.(2)由相互獨(dú)立事件的概率可得男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率:P=1﹣()3﹣()3,解出X的分布列及數(shù)學(xué)期望E(X)即可;【詳解】(1)由圖中表格可得列聯(lián)表如下:非“環(huán)保關(guān)注者”是“環(huán)保關(guān)注者”合計(jì)男104555女153045合計(jì)2575100將列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算得K”的觀測(cè)值,所以在犯錯(cuò)誤的概率不超過0.05的前提下,不能認(rèn)為是否為“環(huán)保關(guān)注者”與性別有關(guān).(2)視頻率為概率,用戶為男“環(huán)保達(dá)人”的概率為.為女“環(huán)保達(dá)人”的概率為,①抽取的3名用戶中既有男“環(huán)保達(dá)人”又有女“環(huán)保達(dá)人”的概率為;②的取值為10,20,30,40.,,,,所以的分布列為10203040.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,考查了概率分布列和期望,計(jì)算能力的應(yīng)用問題,是中檔題目.22、(1)極大值,極小值;(2)詳見解析.【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論