版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北京市東城區(qū)第五十五中學2025屆數(shù)學高二上期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數(shù)在上可導,則等于()A. B.C. D.以上都不對2.已知拋物線,過拋物線的焦點作軸的垂線,與拋物線交于、兩點,點的坐標為,且為直角三角形,則以直線為準線的拋物線的標準方程為()A. B.C. D.3.在平形六面體中,其中,,,,,則的長為()A. B.C. D.4.在等差數(shù)列{an}中,a1=1,,則a7=()A.13 B.14C.15 D.165.已知函數(shù)對于任意的滿足,其中是函數(shù)的導函數(shù),則下列各式正確的是()A. B.C. D.6.口袋中裝有大小形狀相同的紅球3個,白球3個,小明從中不放回的逐一取球,已知在第一次取得紅球的條件下,第二次取得白球的概率為()A.0.4 B.0.5C.0.6 D.0.757.已知拋物線的焦點為,拋物線上的兩點,均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.8.已知點、是雙曲線C:的左、右焦點,P是C左支上一點,若直線的斜率為2,且為直角三角形,則雙曲線C的離心率為()A.2 B.C. D.9.已知橢圓的兩焦點分別為,,P為橢圓上一點,且,則的面積等于()A.6 B.C. D.10.已知直線與圓交于A,B兩點,O為原點,且,則實數(shù)m等于()A. B.C. D.11.命題“?x0∈(0,+∞),”的否定是()A.?x∈(﹣∞,0),2x+sinx≥0B.?x∈(0,+∞),2x+sinx≥0C.?x0∈(0,+∞),D.?x0∈(﹣∞,0),12.若的解集是,則等于()A.-14 B.-6C.6 D.14二、填空題:本題共4小題,每小題5分,共20分。13.在中,,,,則__________.14.正四棱錐底面邊長和高均為分別是其所在棱的中點,則棱臺的體積為___________.15.如圖,正方體中,點E,F(xiàn),G分別是,AB,的中點,則直線與GF所成角的大小是______(用反三角函數(shù)表示)16.根據(jù)某市有關(guān)統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進口總額(單位:千億元)和出口總額(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年若每年的進出口總額,滿足線性相關(guān)關(guān)系,則______;若計劃2022年出口總額達到千億元,預計該年進口總額為______億元三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)一個小島的周圍有環(huán)島暗礁,暗礁分布在以小島中心為圓心,半徑為的圓形區(qū)域內(nèi)(圓形區(qū)域的邊界上無暗礁),已知小島中心位于輪船正西處,港口位于小島中心正北處.(1)若,輪船直線返港,沒有觸礁危險,求的取值范圍?(2)若輪船直線返港,且必須經(jīng)過小島中心東北方向處補水,求的最小值.18.(12分)已知橢圓的右焦點為,短軸長為4,設,的左右有兩個焦點求橢圓C的方程;若P是該橢圓上的一個動點,求的取值范圍;是否存在過點的直線l與橢圓交于不同的兩點C,D,使得?若存在,求出直線l的方程;若不存在,請說明兩點19.(12分)如圖,直角梯形AEFB與菱形ABCD所在平面互相垂直,,,,,,M為AD中點.(1)證明:直線面DEF;(2)求二面角的余弦值.20.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論的零點個數(shù).21.(12分)等差數(shù)列的前項和為,數(shù)列是等比數(shù)列,滿足,,,.(1)求數(shù)列和的通項公式;(2)令,設數(shù)列的前項和為,求.22.(10分)已知拋物線的焦點F到準線的距離為2(1)求C的方程;(2)已知O為坐標原點,點P在C上,點Q滿足,求直線斜率最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)目標式,結(jié)合導數(shù)的定義即可得結(jié)果.【詳解】.故選:C2、B【解析】設點位于第一象限,求得直線的方程,可得出點的坐標,由拋物線的對稱性可得出,進而可得出直線的斜率為,利用斜率公式求得的值,由此可得出以直線為準線的拋物線的標準方程.【詳解】設點位于第一象限,直線的方程為,聯(lián)立,可得,所以,點.為等腰直角三角形,由拋物線的對稱性可得出,則直線的斜率為,即,解得.因此,以直線為準線的拋物線的標準方程為.故選:B.【點睛】本題考查拋物線標準方程的求解,考查計算能力,屬于中等題.3、B【解析】根據(jù)空間向量基本定理、加法的運算法則,結(jié)合空間向量數(shù)量積的運算性質(zhì)進行求解即可.【詳解】因為是平行六面體,所以,所以有:,因此有:,因為,,,,,所以,所以,故選:B4、A【解析】利用等差數(shù)列的基本量,即可求解.【詳解】設等差數(shù)列的公差為,,解得:,則.故選:A5、C【解析】令,結(jié)合題意可得,利用導數(shù)討論函數(shù)的單調(diào)性,進而得出,變形即可得出結(jié)果.【詳解】令,則,又,所以,令,令,所以函數(shù)在上單調(diào)遞減,在單調(diào)遞增,所以,即,則.故選:C6、C【解析】求出第一次取得紅球的事件、第一次取紅球第二次取白球的事件概率,再利用條件概率公式計算作答.【詳解】記“第一次取得紅球”為事件A,“第二次取得白球”為事件B,則,,于是得,所以在第一次取得紅球的條件下,第二次取得白球的概率為0.6.故選:C7、C【解析】作垂直準線于,垂直準線于,作于,結(jié)合拋物線定義得出斜率為可求.【詳解】如圖:作垂直準線于,垂直準線于,作于,因為,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.8、B【解析】根據(jù)雙曲線的定義和勾股定理利用即可得離心率.【詳解】∵直線的斜率為2,為直角三角形,∴,又,∴,.∵,即,∴故選:B.9、B【解析】根據(jù)橢圓定義和余弦定理解得,結(jié)合三解形面積公式即可求解【詳解】由與是橢圓上一點,∴,兩邊平方可得,即,由于,,∴根據(jù)余弦定理可得,綜上可解得,∴的面積等于,故選:B10、A【解析】根據(jù)給定條件求出,再求出圓O到直線l的距離即可計算作答.【詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點O到直線l的距離,因此,,解得,所以實數(shù)m等于.故選:A11、B【解析】利用特稱命題的否定是全稱命題,寫出結(jié)果即可【詳解】命題“?x0∈(0,+∞),”的否定是“?x∈(0,+∞),2x+sinx≥0”故選:B12、A【解析】由一元二次不等式的解集,結(jié)合根與系數(shù)關(guān)系求參數(shù)a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知在中利用余弦定理可得的值,可求,可得,即可得解的值【詳解】解:因為在中,,,,所以由余弦定理可得,所以,即,則故答案為:14、【解析】分別計算,,作差得到答案.【詳解】分別是其所在棱的中點,則正四棱錐底面邊長和高均為,,,故.故答案為:.15、【解析】連接,由得出直線與GF所成角,再由余弦定理得出直線與GF所成角的大小.【詳解】連接,因為,所以直線與GF所成角為.設,則,,,又異面直線的夾角范圍為,所以直線與GF所成角的大小是.故答案為:16、①.1.6②.3.65千##3650【解析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進口總額.【詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當時,即,解得,所以,預計該年進口總額為千億元.故答案為:1.6;3.65千三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)120【解析】(1)建立平面直角坐標系設直線方程,根據(jù)點到直線的距離公式可得;(2)先求補水點的坐標,根據(jù)直線過該點,結(jié)合所求,根據(jù)基本不等式可得.【小問1詳解】根據(jù)題意,以小島中心為原點,建立平面直角坐標系,當時,則輪船返港的直線為,因為沒有觸礁危險,所以原點到的距離,解得.【小問2詳解】根據(jù)題意可得,,點C在直線上,故點C,設輪船返港的直線是,則,所以.當且僅當時取到最小值.18、(1)(2)(3)滿足條件的直線不存在,詳見解析【解析】根據(jù)條件直接求出,進而求出橢圓標準方程;設,表示出,求出其范圍;設CD的中點為;由,則;得到其斜率的乘積為,最后列取方程聯(lián)立計算即可.【詳解】解:由題意可知,,則;所以橢圓C的方程為:;由題意可知,,設,則,;所以的取值范圍是;假設存在滿足條件的直線,根據(jù)題意得直線的斜率存在;則設直線的方程為:;消化簡得:;,則;;設,則CD的中點為;,;,則;,即;即,無解;故滿足條件的直線不存在.【點睛】本題考查橢圓的簡單幾何性質(zhì),向量的數(shù)量積,直線的垂直,設而不求的思想方法,關(guān)鍵在于將幾何條件進行適當?shù)霓D(zhuǎn)化,還考查了學生的綜合運算能力,屬于中檔題.19、(1)證明見解析(2)【解析】(1)由平面平面ABCD,可得平面ABCD,連接BD,可得,以為原點,為軸,豎直向上為軸建立空間直角坐標系,利用向量法計算與平面的法向量的數(shù)量積為0即可得證;(2)分別計算出平面和平面的法向量,然后利用向量夾角公式即可求解.【小問1詳解】證明:因為平面平面ABCD,平面平面ABCD,且,所以平面ABCD,連接BD,則等邊三角形,所以,以為原點,為軸,豎直向上為軸建立如圖所示的空間直角坐標系,則,設為平面的法向量,因為,則有,取,又因為,所以,因為平面,所以平面;【小問2詳解】解:分別設為平面和平面的法向量,因為,則有,取,因,則有,取,所以,由圖可知二面角為銳二面角,所以二面角的余弦值為.20、(1)單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是(2)時,有1個零點;或時,有2個零點;時,有3個零點.【解析】(1)求解函數(shù)的導數(shù),再運用導數(shù)求解函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)導數(shù)分析原函數(shù)的極值,進而討論其零點個數(shù).【詳解】(1)因為,所以由,得或;由,得.故單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是.(2)由(1)可知的極小值是,極大值是.①當時,方程有且僅有1個實根,即有1個零點;②當時,方程有2個不同實根,即有2個零點;③當時,方程有3個不同實根,即有3個零點;④當時,方程有2個不同實根,即有2個零點;⑤當時,方程有1個實根,即有1個零點.綜上,當或時,有1個零點;當或時,有2個零點;當時,有3個零點.21、(1),(2)【解析】(1)根據(jù)條件列關(guān)于公差與公比的方程組,解方程組可得再根據(jù)等差數(shù)列與等比數(shù)列通項公式得結(jié)果(2)根據(jù)錯誤相減法求數(shù)列的前項和為,注意作差時項符號的變化以及求和時項數(shù)的確定試題解析:(1)設數(shù)列的公差為,數(shù)列的公比為,則由得解得所以,.(2)由(1)可知,∴①②①—②得:,∴.點睛:用錯位相減法求和應注意的問題(1)要善于識別題目類型,特別是等比數(shù)列公比為負數(shù)的情形;(2)在寫出“”與“”的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式;(3)在應用錯位相減法求和時,若等比數(shù)列的公比為參數(shù),應分公比等于1和不等于1兩種情況求解.22、(1);(2)最大值為.【解析】(1)由拋物線焦點與準線的距離即可得解;(2)設,由平面向量的知識可得,進而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點,準線方程為,由題意,該拋物線焦點到準線的距離為,所以該拋物線的方程為;(2)[方法一]:軌跡方程+基本不等式法設,則,所以,由在拋物線上可得,即,所以直線的斜率,當時,;當時,,當時,因為,此時,當且僅當,即時,等號成立;當時,;綜上,直線斜率的最大值為.[方法二]:【最優(yōu)解】軌跡方程+數(shù)形結(jié)合法同方法一得到點Q的軌跡方程為設直線的方程為,則當直線與拋物線相切時,其斜率k取到最值.聯(lián)立得,其判別式,解得,所以直線斜率的最大值為[方法三]:軌跡方程+換元求最值法同方法一得點Q的軌跡方程為設直線的斜率為k,則令,則的對稱軸為,所以.故直線斜率的最大值為[方法四]參數(shù)+基本不等式法由題可設因,所以于是,所以則直線的斜率為當且僅
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年公務員個人年終總結(jié)
- 2014年高考語文試卷(福建)(空白卷)
- 稅務稽查事項總結(jié)
- 《濕地生態(tài)工程》課件
- 語義理解與知識圖譜構(gòu)建-洞察分析
- 鐵路噪音隔離帶設計研究-洞察分析
- 外包服務質(zhì)量保障-洞察分析
- 網(wǎng)絡連通性優(yōu)化分析-洞察分析
- 虛擬現(xiàn)實技術(shù)在電影制作中的影響-洞察分析
- 虛擬現(xiàn)實游戲體驗優(yōu)化-洞察分析
- 部編版八年級初二語文上冊第六單元《寫作表達要得體》說課稿
- 遼寧沈陽市文體旅產(chǎn)業(yè)發(fā)展集團有限公司招聘筆試沖刺題2024
- 政治-2025年八省適應性聯(lián)考模擬演練考試暨2025年四川省新高考教研聯(lián)盟高三年級統(tǒng)一監(jiān)測試題和答案
- 2024年中國醫(yī)藥研發(fā)藍皮書
- 坍塌、垮塌事故專項應急預案(3篇)
- 2024年融媒體中心事業(yè)單位考試工作人員另選錄用55人內(nèi)部選題庫及參考答案(研優(yōu)卷)
- 陜西省安康市2023-2024學年高一上學期期末考試 生物 含解析
- WPS Office辦公軟件應用教學教案
- 2024年時政熱點知識競賽試卷及答案(共四套)
- 幼兒園后勤主任年終總結(jié)
- 初級消防設施操作員實操題庫 (一)
評論
0/150
提交評論