版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省佳木斯市湯原縣高級中學2025屆高一數(shù)學第一學期期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.天文學中為了衡量星星的明暗程度,古希臘天文學家喜帕恰斯(,又名依巴谷)在公元前二世紀首先提出了星等這個概念.星等的數(shù)值越小,星星就越亮;星等的數(shù)值越大,它的光就越暗.到了1850年,由于光度計在天體光度測量中的應用,英國天文學家普森()又提出了衡量天體明暗程度的亮度的概念.天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足.其中星等為的星的亮度為.已知“心宿二”的星等是1.00.“天津四”的星等是1.25.“心宿二”的亮度是“天津四”的倍,則與最接近的是(當較小時,)A.1.24 B.1.25C.1.26 D.1.272.已知函數(shù),則方程的實數(shù)根的個數(shù)為()A. B.C. D.3.直線l:ax+y﹣3a=0與曲線y有兩個公共點,則實數(shù)a的取值范圍是A.[,] B.(0,)C.[0,) D.(,0)4.古希臘數(shù)學家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,著作中有這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)(且)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.已知,動點滿足,則動點軌跡與圓位置關系是()A.外離 B.外切C.相交 D.內(nèi)切5.已知直線和互相平行,則實數(shù)的取值為()A.或3 B.C. D.1或6.設四邊形ABCD為平行四邊形,,.若點M,N滿足,則()A.20 B.15C.9 D.67.將函數(shù)的圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是A. B.C. D.8.已知函數(shù)則函數(shù)的零點個數(shù)為.A. B.C. D.9.如圖,以為直徑在正方形內(nèi)部作半圓,為半圓上與不重合的一動點,下面關于的說法正確的是A.無最大值,但有最小值B.既有最大值,又有最小值C.有最大值,但無最小值D.既無最大值,又無最小值10.已知,,若對任意,或,則的取值范圍是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.唐代李皋發(fā)明了“槳輪船”,這種船是原始形態(tài)的輪船,是近代明輪船航行模式之先導,如圖,某槳輪船的輪子的半徑為,他以的角速度逆時針旋轉(zhuǎn),輪子外邊沿有一點P,點P到船底的距離是H(單位:m),輪子旋轉(zhuǎn)時間為t(單位:s).當時,點P在輪子的最高處.(1)當點P第一次入水時,__________;(2)當時,___________.12.“”是“”的______條件(請從“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中選擇一個填)13.已知點,若,則點的坐標為_________.14.已知,,且,則的最小值為________.15.已知扇形OAB的面積為,半徑為3,則圓心角為_____16.圓的圓心到直線的距離為______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,射線、分別與軸正半軸成和角,過點作直線分別交、于、兩點,當?shù)闹悬c恰好落在直線上時,求直線的方程18.已知,(1)當且x是第四象限角時,求的值;(2)若關于x的方程有實數(shù)根,求a的最小值19.已知全集,集合,.(1)當時,求;(2)若,且,求的取值范圍.20.設為定義在R上的偶函數(shù),當時,;當時,,直線與拋物線的一個交點為,如圖所示.(1)補全的圖像,寫出的遞增區(qū)間(不需要證明);(2)根據(jù)圖象寫出不等式的解集21.已知不等式的解集為(1)求a的值;(2)若不等式的解集為R,求實數(shù)m的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】根據(jù)題意,代值計算,即可得,再結合參考公式,即可估算出結果.【詳解】根據(jù)題意可得:可得,解得,根據(jù)參考公式可得,故與最接近的是.故選:C.【點睛】本題考查對數(shù)運算,以及數(shù)據(jù)的估算,屬基礎題.2、B【解析】由已知,可令,要求,即為,原題轉(zhuǎn)化為直線與的圖象的交點情況,通過畫出函數(shù)的圖象,討論的取值,即可直線與的圖象的交點情況.【詳解】令,則,①當時,,,,即,②當時,,,畫出函數(shù)的圖象,如圖所示,若,即,無解;若,直線與的圖象有3個交點,即有3個不同實根;若,直線與的圖象有2個交點,即有2個不同實根;綜上所述,方程的實數(shù)根的個數(shù)為5個,故選:3、C【解析】根據(jù)直線的點斜式方程可得直線過定點,曲線表示以為圓心,1為半徑的半圓,作出圖形,利用數(shù)形結合思想求出兩個極限位置的斜率,即可得解.【詳解】直線,即斜率為且過定點,曲線為以為圓心,1為半徑的半圓,如圖所示,當直線與半圓相切,為切點時(此時直線的傾斜角為鈍角),圓心到直線的距離,,解得,當直線過原點時斜率,即,則直線與半圓有兩個公共點時,實數(shù)的取值范圍為:[0,),故選:C【點睛】本題主要考查圓的方程與性質(zhì),直線與圓的位置關系,考查了數(shù)形結合思想的應用,屬于中檔題.4、C【解析】設動點P的坐標,利用已知條件列出方程,化簡可得點P的軌跡方程為圓,再判斷圓心距和半徑的關系即可得解.,詳解】設,由,得,整理得,表示圓心為,半徑為的圓,圓的圓心為為圓心,為半徑的圓兩圓的圓心距為,滿足,所以兩個圓相交.故選:C.5、B【解析】利用兩直線平行等價條件求得實數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結論,可避免討論:已知,,則,6、C【解析】根據(jù)圖形得出,,,結合向量的數(shù)量積求解即可.【詳解】因為四邊形ABCD為平行四邊形,點M、N滿足,根據(jù)圖形可得:,,,,,,,,故選C.本題考查了平面向量的運算,數(shù)量積的運用,考查了數(shù)形結合的思想,關鍵是向量的分解,表示.考點:向量運算.7、C【解析】將函數(shù)的圖象上所有的點向右平行移動個單位長度,所得函數(shù)圖象的解析式為y=sin(x-);再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數(shù)解析式是.故選C.8、B【解析】令,得,令,由,得或,作出函數(shù)的圖象,結合函數(shù)的圖象,即可求解【詳解】由題意,令,得,令,由,得或,作出函數(shù)的圖象,如圖所示,結合函數(shù)的圖象可知,有個解,有個解,故的零點個數(shù)為,故選B.【點睛】本題主要考查了函數(shù)的零點問題,其中令,由,得到或,作出函數(shù)的圖象,結合函數(shù)的圖象求解是解答的關鍵,著重考查了數(shù)形結合思想,以及推理與運算能力,屬于基礎題9、D【解析】設正方形的邊長為2,如圖建立平面直角坐標系,則D(-1,2),P(cosθ,sinθ),(其中0<θ<π),∵cosθ∈(-1,1),∴∈(4,16).故選D.點睛:本題考查了向量的加法及向量模的計算,利用建系的方法,引入三角函數(shù)來解決使得思路清晰,計算簡便,遇見正方形,圓,等邊三角形,直角三角形等特殊圖形常用建系的方法.10、C【解析】先判斷函數(shù)g(x)的取值范圍,然后根據(jù)或成立求得m的取值范圍.【詳解】∵g(x)=﹣2,當x<時,恒成立,當x≥時,g(x)≥0,又∵?x∈R,f(x)<0或g(x)<0,∴f(x)=m(x﹣2m)(x+m+3)<0在x≥時恒成立,即m(x﹣2m)(x+m+3)<0在x≥時恒成立,則二次函數(shù)y=m(x﹣2m)(x+m+3)圖象開口只能向下,且與x軸交點都在(,0)的左側,∴,即,解得<m<0,∴實數(shù)m的取值范圍是:(,0)故選C【點睛】本題主要考查指數(shù)函數(shù)和二次函數(shù)的圖象和性質(zhì),根據(jù)條件確定f(x)=m(x﹣2m)(x+m+3)<0在x≥時恒成立是解決本題的關鍵,綜合性較強,難度較大二、填空題:本大題共6小題,每小題5分,共30分。11、①.②.##【解析】算出點從最高點到第一次入水的圓心角,即可求出對應時間;由題意求出關于的表達式,代值運算即可求出對應.【詳解】如圖所示,當?shù)谝淮稳胨畷r到達點,由幾何關系知,又圓的半徑為3,故,此時輪子旋轉(zhuǎn)的圓心角為:,故;由題可知,即,當時,.故答案為:;12、必要不充分【解析】根據(jù)充分條件、必要條件的定義結合余弦函數(shù)的性質(zhì)可得答案.【詳解】當時,可得由,不能得到例如:取時,,也滿足所以由,可得成立,反之不成立“”是“”的必要不充分條件故答案為:必要不充分13、(0,3)【解析】設點的坐標,利用,求解即可【詳解】解:點,,,設,,,,,解得,點的坐標為,故答案為:【點睛】本題考查向量的坐標運算,向量相等的應用,屬于基礎題14、12【解析】,展開后利用基本不等式可求【詳解】∵,,且,∴,當且僅當,即,時取等號,故的最小值為12故答案為:1215、【解析】直接利用扇形的面積公式得到答案.【詳解】故答案為:【點睛】本題考查了扇形面積的計算,屬于簡單題.16、1【解析】利用點到直線的距離公式可得所求的距離.【詳解】圓心坐標為,它到直線的距離為,故答案為:1【點睛】本題考查圓的標準方程、點到直線的距離,此類問題,根據(jù)公式計算即可,本題屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】先求出、所在的直線方程,根據(jù)直線方程分別設A、B點坐標,進而求出的中點C的坐標,利用點C在直線上以及A、B、P三點共線列關系式解出B點坐標,從而求出直線AB的斜率,然后代入點斜式方程化簡即可.【詳解】解:由題意可得,,所以直線,設,,所以的中點由點在上,且、、三點共線得解得,所以又,所以所以,即直線的方程為【點睛】知識點點睛:(1)中點坐標公式:,則AB的中點為;(2)直線的點斜式方程:.18、(1)(2)1【解析】(1)根據(jù)立方差公式可知,要計算及的值就可以求解問題;(2)將方程轉(zhuǎn)化為,再分類討論即可求解.【小問1詳解】,即,則,即,所以因為x是第四像限角,所以,所以,所以【小問2詳解】由,可得,則方程可化為,①當時,,顯然方程無解;②當時,方程等價于又(當且僅當時取“=”),所以要使得關于x的方程有實數(shù)根,則.故a的最小值是119、(1)(2)【解析】(1)解出不等式,然后可得答案;(2)由條件可得,,解出即可.【小問1詳解】(1)由題意得:.當時,,所以,.【小問2詳解】因為,所以,即.又,所以,解得.所以的取值范圍.20、(1)圖像見解析,單調(diào)增區(qū)間,(2)【解析】(1)由偶函數(shù)的圖象關于軸對稱可補全圖象,然后寫出遞增區(qū)間;(2)根據(jù)圖象寫出答案即可.【小問1詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專用電力廠排水管道年度銷售協(xié)議2024一
- 專賣店人員勞務合作協(xié)議版B版
- 二零二四全新企業(yè)培訓場地租賃合作協(xié)議3篇
- 智駕未來路演模板
- 運動防護教學
- 閱讀節(jié)啟動儀式
- 優(yōu)化福利提升滿意度
- 2025年度廠房租賃合同范本:高科技產(chǎn)業(yè)園區(qū)4篇
- 2025年高科技研發(fā)中心廠房土地轉(zhuǎn)讓與租約管理合同4篇
- 二零二四五人合伙設立藝術品交易平臺協(xié)議3篇
- 2025年工程合作協(xié)議書
- 2025年山東省東營市東營區(qū)融媒體中心招聘全媒體采編播專業(yè)技術人員10人歷年高頻重點提升(共500題)附帶答案詳解
- 2025年宜賓人才限公司招聘高頻重點提升(共500題)附帶答案詳解
- KAT1-2023井下探放水技術規(guī)范
- 垃圾處理廠工程施工組織設計
- 駕駛證學法減分(學法免分)題庫及答案200題完整版
- 2024年四川省瀘州市中考英語試題含解析
- 2025屆河南省九師聯(lián)盟商開大聯(lián)考高一數(shù)學第一學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 撫養(yǎng)權起訴狀(31篇)
- 煙花爆竹零售應急預案
- 新加坡SM1向性測試模擬試卷
評論
0/150
提交評論