版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆天津市河北區(qū)數(shù)學(xué)高二上期末監(jiān)測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若拋物線的準(zhǔn)線方程是,則拋物線的標(biāo)準(zhǔn)方程是()A. B.C. D.2.設(shè)雙曲線的虛軸長(zhǎng)為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.3.等比數(shù)列的前項(xiàng)和為,若,則()A. B.8C.1或 D.或4.執(zhí)行如圖所示的程序框圖,若輸入t的取值范圍為,則輸出s的取值范圍為()A. B.C. D.5.定義運(yùn)算:.已知,都是銳角,且,,則()A. B.C. D.6.己知命題;命題,則下列命題中為假命題的是()A. B.C. D.7.如圖,是對(duì)某位同學(xué)一學(xué)期次體育測(cè)試成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)得到的散點(diǎn)圖,關(guān)于這位同學(xué)的成績(jī)分析,下列結(jié)論錯(cuò)誤的是()A.該同學(xué)的體育測(cè)試成績(jī)總的趨勢(shì)是在逐步提高,且次測(cè)試成績(jī)的極差超過分B.該同學(xué)次測(cè)試成績(jī)的眾數(shù)是分C.該同學(xué)次測(cè)試成績(jī)的中位數(shù)是分D.該同學(xué)次測(cè)試成績(jī)與測(cè)試次數(shù)具有相關(guān)性,且呈正相關(guān)8.過拋物線()的焦點(diǎn)作斜率大于的直線交拋物線于,兩點(diǎn)(在的上方),且與準(zhǔn)線交于點(diǎn),若,則A. B.C. D.9.已知向量分別是直線的方向向量,若,則()A. B.C. D.10.已知為原點(diǎn),點(diǎn),以為直徑的圓的方程為()A. B.C. D.11.設(shè)函數(shù)在R上可導(dǎo),則()A. B.C. D.以上都不對(duì)12.若x,y滿足約束條件,則的最大值為()A.1 B.0C.?1 D.?3二、填空題:本題共4小題,每小題5分,共20分。13.某中學(xué)擬從4月16號(hào)至30號(hào)期間,選擇連續(xù)兩天舉行春季運(yùn)動(dòng)會(huì),從已往的氣象記錄中隨機(jī)抽取一個(gè)年份,記錄天氣結(jié)果如下:日期161718192021222324252627282930天氣晴陰雨陰陰晴陰晴雨雨陰晴晴晴雨估計(jì)運(yùn)動(dòng)會(huì)期間不下雨的概率為_____________.14.《九章算術(shù)》中的“商功”篇主要講述了以立體幾何為主的各種形體體積的計(jì)算,其中塹堵是指底面為直角三角形的直棱柱.如圖,在塹堵,中,M是的中點(diǎn),,,,若,則_________15.在長(zhǎng)方體中,若,,則異面直線與所成角的大小為______.16.狄利克雷是十九世紀(jì)德國(guó)杰出的數(shù)學(xué)家,對(duì)數(shù)論、數(shù)學(xué)分析和數(shù)學(xué)物理有突出貢獻(xiàn).狄利克雷曾提出了“狄利克雷函數(shù)”.若,根據(jù)“狄利克雷函數(shù)”可求___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系xOy中,橢圓C的左,右焦點(diǎn)分別為F1(﹣,0),F(xiàn)2(,0),且橢圓C過點(diǎn)(﹣).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)過(0,﹣2)的直線l與橢圓C交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.18.(12分)已知函數(shù),(),(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值(2)當(dāng)時(shí),若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍19.(12分)已知圓:,點(diǎn)A是圓上一動(dòng)點(diǎn),點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求點(diǎn)的軌跡方程;(2)直線過點(diǎn)且與點(diǎn)的軌跡交于A,兩點(diǎn),若,求直線的方程.20.(12分)已知圓M的方程為.(1)寫出圓M的圓心坐標(biāo)和半徑;(2)經(jīng)過點(diǎn)的直線l被圓M截得弦長(zhǎng)為,求l的方程.21.(12分)如圖所示,在空間四邊形中,,分別為,的中點(diǎn),,分別在,上,且.求證:(1)、、、四點(diǎn)共面;(2)與的交點(diǎn)在直線上22.(10分)某消費(fèi)者協(xié)會(huì)在3月15號(hào)舉行了以“攜手共治,暢享消費(fèi)”為主題的大型宣傳咨詢服務(wù)活動(dòng),著力提升消費(fèi)者維權(quán)意識(shí),組織方從參加活動(dòng)的群眾中隨機(jī)抽取120名群眾,按年齡將這120名群眾分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.(1)求圖中m的值;(2)估算這120名群眾的年齡的中位數(shù)(結(jié)果精確到0.1);(3)已知第1組群眾中男性有2人,組織方要從第1組中隨機(jī)抽取2名群眾組成維權(quán)志愿者服務(wù)隊(duì),求恰有一名女性的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)拋物線的準(zhǔn)線方程,可直接得出拋物線的焦點(diǎn),進(jìn)而利用待定系數(shù)法求得拋物線的標(biāo)準(zhǔn)方程【詳解】準(zhǔn)線方程為,則說明拋物線的焦點(diǎn)在軸的正半軸則其標(biāo)準(zhǔn)方程可設(shè)為:則準(zhǔn)線方程為:解得:則拋物線的標(biāo)準(zhǔn)方程為:故選:D2、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.3、C【解析】根據(jù)等比數(shù)列的前項(xiàng)和公式及等比數(shù)列通項(xiàng)公式即可求解.【詳解】設(shè)等比數(shù)列的公比為,則因?yàn)?,所以,即,解得或,所以?故選:C.4、A【解析】由程序圖可得,,再分段求解函數(shù)的值域,即可求解【詳解】由程序圖可得,當(dāng)時(shí),,,當(dāng)時(shí),,,綜上所述,的取值范圍為,故選:A5、B【解析】,只需求出與的正、余弦值即可,用平方關(guān)系時(shí)注意角的范圍.【詳解】解:因?yàn)?,都是銳角,所以,,因?yàn)?,所以,即,,所以,,因?yàn)?,所有,故選:B.【點(diǎn)睛】信息給予題,已知三角函數(shù)值求三角函數(shù)值,考查根據(jù)三角函數(shù)的恒等變換求值,基礎(chǔ)題.6、A【解析】根據(jù)或且非命題的真假進(jìn)行判斷即可.【詳解】當(dāng),故命題是真命題,,故命題是真命題.因此可知是假命題,是真命題,,均為真命題.故選:A7、C【解析】根據(jù)給定的散點(diǎn)圖,逐一分析各個(gè)選項(xiàng)即可判斷作答.【詳解】對(duì)于A,由散點(diǎn)圖知,8次測(cè)試成績(jī)總體是依次增大,極差為,A正確;對(duì)于B,散點(diǎn)圖中8個(gè)數(shù)據(jù)的眾數(shù)是48,B正確;對(duì)于C,散點(diǎn)圖中的8個(gè)數(shù)由小到大排列,最中間兩個(gè)數(shù)都是48,則次測(cè)試成績(jī)的中位數(shù)是分,C不正確;對(duì)于D,散點(diǎn)圖中8個(gè)點(diǎn)落在某條斜向上的直線附近,則次測(cè)試成績(jī)與測(cè)試次數(shù)具有相關(guān)性,且呈正相關(guān),D正確.故選:C8、A【解析】分別過作準(zhǔn)線的垂線,垂足分別為,設(shè),則,,故選A.9、C【解析】由題意,得,由此可求出答案【詳解】解:∵,且分別是直線的方向向量,∴,∴,∴,故選:C【點(diǎn)睛】本題主要考查向量共線的坐標(biāo)表示,屬于基礎(chǔ)題10、A【解析】求圓的圓心和半徑,根據(jù)圓的標(biāo)準(zhǔn)方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒11、B【解析】根據(jù)極限的定義計(jì)算【詳解】由題意故選:B12、B【解析】先畫出可行域,由,得,作出直線,過點(diǎn)時(shí),取得最大值,求出點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)中可得答案【詳解】不等式組表示的可行域如圖所示,由,得,作出直線,過點(diǎn)時(shí),取得最大值,由,得,即,所以的最大值為,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以每相鄰兩天為一個(gè)基本事件,求出試驗(yàn)的基本事件數(shù),再求出兩天都不下雨的基本事件數(shù),利用古典概率公式計(jì)算作答.【詳解】依題意,以每相鄰兩天為一個(gè)基本事件,如16號(hào)與17號(hào)、17號(hào)與18號(hào)為不同的兩個(gè)基本事件,則從4月16號(hào)至30號(hào)期間,共有14個(gè)基本事件,它們等可能,其中相鄰兩天不下雨有16與17,19與20,20與21,21與22,22與23,26與27,27與28,28與29,共8個(gè)不同結(jié)果,所以運(yùn)動(dòng)會(huì)期間不下雨的概率為.故答案為:14、【解析】建立空間直角坐標(biāo)系,利用空間向量可以解決問題.【詳解】設(shè),如下圖所示,建立空間直角坐標(biāo)系,,,,,,則所以又因?yàn)樗怨蚀鸢笧椋?5、【解析】畫出長(zhǎng)方體,再將異面直線與利用平行線轉(zhuǎn)移到一個(gè)三角形內(nèi)求解角度即可.【詳解】畫出長(zhǎng)方體可得異面直線與所成角為與之間的夾角,連接.則因?yàn)?則,又,故,又,故為等腰直角三角形,故,即異面直線與所成角的大小為故答案為【點(diǎn)睛】本題主要考查立體幾何中異面直線的角度問題,一般的處理方法是將異面直線經(jīng)過平行線的轉(zhuǎn)換構(gòu)成三角形求角度,屬于基礎(chǔ)題型.16、1【解析】由“狄利克雷函數(shù)”解析式,先求出,再根據(jù)指數(shù)函數(shù)的解析式求即可.【詳解】由題設(shè),,則.故答案:1三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或.【解析】(1)設(shè)標(biāo)準(zhǔn)方程代入點(diǎn)的坐標(biāo),解方程組得解.(2)設(shè)直線方程代入橢圓方程消元,韋達(dá)定理整體思想,可得直線斜率得解.【小問1詳解】因?yàn)闄E圓C的焦點(diǎn)為,可設(shè)橢圓C的方程為,又點(diǎn)在橢圓C上,所以,解得,因此,橢圓C的方程為;【小問2詳解】當(dāng)直線的斜率不存在時(shí),顯然不滿足題意;當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,設(shè),,因?yàn)?,所以,因?yàn)?,,所以,所以,①?lián)立方程,消去得,則,代入①,得,解得,經(jīng)檢驗(yàn),此時(shí)直線與橢圓相交,所以直線l的方程是或.18、【解析】(1)求a,b的值,根據(jù)曲線與曲線在它們的交點(diǎn)處具有公共切線,可知切點(diǎn)處的函數(shù)值相等,切點(diǎn)處的斜率相等,列方程組,即可求出的值;(2)求k的取值范圍.,先求出的解析式,由已知時(shí),設(shè),求導(dǎo)函數(shù),確定函數(shù)的極值點(diǎn),進(jìn)而可得時(shí),函數(shù)在區(qū)間上的最大值為;時(shí),函數(shù)在在區(qū)間上的最大值小于,由此可得結(jié)論試題解析:(1),因?yàn)榍€與曲線在它們的交點(diǎn)處具有公共切線,所以,所以;(2)當(dāng)時(shí),,,,令,則,令,得,所以在與上單調(diào)遞增,在上單調(diào)遞減,其中為極大值,所以如果在區(qū)間最大值為,即區(qū)間包含極大值點(diǎn),所以考點(diǎn):導(dǎo)數(shù)的幾何意義,函數(shù)的單調(diào)性與最值19、(1);(2)x=1或y=1.【解析】(1)設(shè)線段中點(diǎn)為,點(diǎn),用x,y表示,代入方程即可;(2)分l斜率存在和不存在進(jìn)行討論,根據(jù)弦長(zhǎng)求出l方程.【小問1詳解】設(shè)線段中點(diǎn)為,點(diǎn),,,,,,即點(diǎn)C的軌跡方程為.【小問2詳解】直線l的斜率不存在時(shí),l為x=1,代入得,則弦長(zhǎng)滿足題意;直線l斜率存在時(shí),設(shè)直線l斜率為k,其方程為,即,圓的圓心到l的距離,則;綜上,l為x=1或y=1.20、(1)圓心坐標(biāo)為,半徑為2(2)或【解析】(1)求得圓的標(biāo)準(zhǔn)方程,從而求得圓心和半徑.(2)根據(jù)直線的斜率存在和不存在進(jìn)行分類討論,由此求得的方程.【小問1詳解】圓的標(biāo)準(zhǔn)方程為:.所以圓M的圓心坐標(biāo)為,半徑為2.【小問2詳解】因?yàn)閳AM半徑為2,直線l被圓M截得弦長(zhǎng)為,由垂徑定理可知M到直線距離為1.當(dāng)l不垂直于軸時(shí),設(shè),即,則.解得,于是l的方程為,即.當(dāng)l垂直于軸時(shí),到點(diǎn)M的距離為1.綜上,l的方程為,或.21、(1)證明見解析;(2)證明見解析【解析】(1)由平行關(guān)系轉(zhuǎn)化,可得,即可證明四點(diǎn)共面;(2)由條件證明與的交點(diǎn)既在平面上,又在平面上,即可證明.【詳解】證明(1)∵,∴∵,分別為,的中點(diǎn),∴,∴,∴,,,四點(diǎn)共面(2)∵,不是,的中點(diǎn),∴,且,故為梯形∴與必相交,設(shè)交點(diǎn)為,∴平面,平面,∴平面,且平面,∴,即與的交點(diǎn)在直線上22、(1)(2)(3)【解析】(1)由頻率分布直方圖中所有頻率和為1求出;(2)求出概率對(duì)應(yīng)的值即為中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人擔(dān)保保證書
- 房屋買賣合同糾紛案例解讀
- 電子元器件采購(gòu)合同樣本
- 塑料袋配送購(gòu)銷合同
- 創(chuàng)業(yè)聯(lián)盟協(xié)議書
- 設(shè)備租賃合同范本范本格式
- 酒店食堂服務(wù)招標(biāo)公告
- 事業(yè)單位采購(gòu)合同中的支付方式
- 銷售合同調(diào)整協(xié)議的修改要點(diǎn)
- 購(gòu)銷合同有效期內(nèi)的合同履行條件
- 幕墻維護(hù)與保養(yǎng)技術(shù)
- 美容門診感染管理制度
- 2023年電商高級(jí)經(jīng)理年度總結(jié)及下一年計(jì)劃
- 模具開發(fā)FMEA失效模式分析
- 年產(chǎn)40萬噸灰底涂布白板紙?jiān)旒堒囬g備料及涂布工段初步設(shè)計(jì)
- 1-3-二氯丙烯安全技術(shù)說明書MSDS
- 學(xué)生思想政治工作工作證明材料
- 一方出資一方出力合作協(xié)議
- 污水處理藥劑采購(gòu)?fù)稑?biāo)方案(技術(shù)方案)
- 環(huán)保設(shè)施安全風(fēng)險(xiǎn)評(píng)估報(bào)告
- 數(shù)字邏輯與計(jì)算機(jī)組成 習(xí)題答案 袁春風(fēng) 第3章作業(yè)批改總結(jié)
評(píng)論
0/150
提交評(píng)論