版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省周口市川匯區(qū)2025屆高二數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)檢測試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線的左、右焦點(diǎn)分別為,過點(diǎn)的直線與圓相切于點(diǎn),交雙曲線的右支于點(diǎn),且點(diǎn)是線段的中點(diǎn),則雙曲線的漸近線方程為()A. B.C. D.2.若拋物線x=﹣my2的焦點(diǎn)到準(zhǔn)線的距離為2,則m=()A.﹣4 B.C. D.±3.在四面體OABC中,點(diǎn)M在線段OA上,且,N為BC中點(diǎn),已知,,,則等于()A. B.C. D.4.下列橢圓中,焦點(diǎn)坐標(biāo)是的是()A. B.C. D.5.曲線在處的切線如圖所示,則()A.0 B.C. D.6.已知四面體,所有棱長均為2,點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則()A.1 B.2C.-1 D.-27.已知,是橢圓的兩焦點(diǎn),是橢圓上任一點(diǎn),從引外角平分線的垂線,垂足為,則點(diǎn)的軌跡為()A.圓 B.兩個(gè)圓C.橢圓 D.兩個(gè)橢圓8.拋物線的焦點(diǎn)為F,點(diǎn)為該拋物線上的動(dòng)點(diǎn),點(diǎn)A是拋物線的準(zhǔn)線與坐標(biāo)軸的交點(diǎn),則的最大值是()A.2 B.C. D.9.①直線在軸上的截距為;②直線的傾斜角為;③直線必過定點(diǎn);④兩條平行直線與間的距離為.以上四個(gè)命題中正確的命題個(gè)數(shù)為()A. B.C. D.10.已知三角形三個(gè)頂點(diǎn)為、、,則邊上的高所在直線的方程為()A. B.C. D.11.若方程表示圓,則實(shí)數(shù)m的取值范圍為()A B.C. D.12.若兩直線與互相垂直,則k的值為()A.1 B.-1C.-1或1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.橢圓的離心率是______14.已知雙曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,則其漸近線方程為__________15.函數(shù)在處切線的斜率為_____16.已知雙曲線的左,右焦點(diǎn)分別為,,右焦點(diǎn)到一條漸近線的距離是,則其離心率的值是______;若點(diǎn)P是雙曲線C上一點(diǎn),滿足,,則雙曲線C的方程為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知a>0,b>0,a+b=1,求證:.18.(12分)已知函數(shù)(1)求的圖象在點(diǎn)處的切線方程;(2)求在上的最大值與最小值19.(12分)在水平桌面上放一只內(nèi)壁光滑的玻璃水杯,已知水杯內(nèi)壁為拋物面型(拋物面指拋物線繞其對(duì)稱軸旋轉(zhuǎn)所得到的面),拋物面的軸截面是如圖所示的拋物線.現(xiàn)有一些長短不一、質(zhì)地均勻的細(xì)直金屬棒,其長度均不小于拋物線通徑的長度(通徑是過拋物線焦點(diǎn),且與拋物線的對(duì)稱軸垂直的直線被拋物線截得的弦),若將這些細(xì)直金屬棒,隨意丟入該水杯中,實(shí)驗(yàn)發(fā)現(xiàn):當(dāng)細(xì)棒重心最低時(shí),達(dá)到靜止?fàn)顟B(tài),此時(shí)細(xì)棒交匯于一點(diǎn).(1)請(qǐng)結(jié)合你學(xué)過的數(shù)學(xué)知識(shí),猜想細(xì)棒交匯點(diǎn)的位置;(2)以玻璃水杯內(nèi)壁軸截面的拋物線頂點(diǎn)為原點(diǎn),建立如圖所示直角坐標(biāo)系.設(shè)玻璃水杯內(nèi)壁軸截面的拋物線方程為,將細(xì)直金屬棒視為拋物線的弦,且弦長度為,以細(xì)直金屬棒的中點(diǎn)為其重心,請(qǐng)從數(shù)學(xué)角度解釋上述實(shí)驗(yàn)現(xiàn)象.20.(12分)如圖所示,、分別為橢圓的左、右焦點(diǎn),A,B為兩個(gè)頂點(diǎn),已知橢圓C上的點(diǎn)到、兩點(diǎn)的距離之和為4.(1)求a的值和橢圓C的方程;(2)過橢圓C的焦點(diǎn)作AB的平行線交橢圓于P,Q,求的面積21.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F且斜率大于0的直線交拋物線C于A,B兩點(diǎn)(其中A在B的上方),過線段AB的中點(diǎn)M且與x軸平行的直線依次交直線OA、OB,l于點(diǎn)P、Q、N(1)試探索PM與NQ長度的大小關(guān)系,并證明你的結(jié)論;(2)當(dāng)P、Q是線段MN的三等分點(diǎn)時(shí),求直線AB的斜率;(3)當(dāng)P、Q不是線段MN的三等分點(diǎn)時(shí),證明:以點(diǎn)Q為圓心、線段QO長為半徑的圓Q不可能包圍線段NP22.(10分)設(shè)F為橢圓的右焦點(diǎn),過點(diǎn)的直線與橢圓C交于兩點(diǎn).(1)若點(diǎn)B為橢圓C的上頂點(diǎn),求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】焦點(diǎn)三角形問題,可結(jié)合為三角形的中位線,判斷:焦點(diǎn)三角形為直角三角形,并且有,,可由勾股定理得出關(guān)系,從而得到關(guān)系,從而求得漸近線方程.【詳解】由題意知,,且點(diǎn)是線段的中點(diǎn),點(diǎn)是線段的中點(diǎn),為三角形的中位線故,故,由雙曲線定義有由勾股定理有故則則,故故漸近線方程為:故選:D【點(diǎn)睛】雙曲線上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形,稱為雙曲線的焦點(diǎn)三角形,與焦點(diǎn)三角形有關(guān)的計(jì)算或證明常利用正弦定理、余弦定理、||PF1|-|PF2||=2a,得到a,c的關(guān)系2、D【解析】把拋物線的方程化為標(biāo)準(zhǔn)方程,由焦點(diǎn)到準(zhǔn)線的距離為,即可得到結(jié)果,得到答案.【詳解】由題意,拋物線,可得,又由拋物線的焦點(diǎn)到準(zhǔn)線的距離為2,即,解得.故選D.【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程,以及簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的焦點(diǎn)到準(zhǔn)線的距離為是解答的關(guān)鍵,著重考查了推理與計(jì)算能力,屬于基礎(chǔ)題.3、B【解析】根據(jù)空間向量基本定理結(jié)合已知條件求解【詳解】因?yàn)镹為BC中點(diǎn),所以,因?yàn)镸在線段OA上,且,所以,所以,故選:B4、B【解析】根據(jù)給定條件逐一分析各選項(xiàng)中的橢圓焦點(diǎn)即可判斷作答.【詳解】對(duì)于A,橢圓的焦點(diǎn)在x軸上,A不是;對(duì)于B,橢圓,即,焦點(diǎn)在y軸上,半焦距,其焦點(diǎn)為,B是;對(duì)于C,橢圓,即,焦點(diǎn)在y軸上,半焦距,其焦點(diǎn)為,C不是;對(duì)于D,橢圓,即,焦點(diǎn)在y軸上,半焦距,其焦點(diǎn)為,D不是.故選:B5、C【解析】由圖示求出直線方程,然后求出,,即可求解.【詳解】由直線經(jīng)過,,可求出直線方程為:∵在處的切線∴,∴故選:C【點(diǎn)睛】用導(dǎo)數(shù)求切線方程常見類型:(1)在出的切線:為切點(diǎn),直接寫出切線方程:;(2)過出的切線:不是切點(diǎn),先設(shè)切點(diǎn),聯(lián)立方程組,求出切點(diǎn)坐標(biāo),再寫出切線方程:.6、D【解析】在四面體中,取定一組基底向量,表示出,,再借助空間向量數(shù)量積計(jì)算作答.【詳解】四面體所有棱長均為2,則向量不共面,兩兩夾角都為,則,因點(diǎn)E,F(xiàn)分別為棱AB,CD的中點(diǎn),則,,,所以.故選:D7、A【解析】設(shè)的延長線交的延長線于點(diǎn),由橢圓性質(zhì)推導(dǎo)出,由題意知是△的中位線,從而得到點(diǎn)的軌跡是以為圓心,以為半徑的圓【詳解】是焦點(diǎn)為、的橢圓上一點(diǎn)為的外角平分線,,設(shè)的延長線交的延長線于點(diǎn),如圖,,,,由題意知是△的中位線,,點(diǎn)的軌跡是以為圓心,以為半徑的圓故選:A8、B【解析】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,則,當(dāng)直線PA與拋物線相切時(shí),最小,取得最大值,設(shè)出直線方程得到直線和拋物線相切時(shí)的點(diǎn)P的坐標(biāo),然后進(jìn)行計(jì)算得到結(jié)果.【詳解】設(shè)直線的傾斜角為,設(shè)垂直于準(zhǔn)線于,由拋物線的性質(zhì)可得,所以則,當(dāng)最小時(shí),則值最大,所以當(dāng)直線PA與拋物線相切時(shí),θ最大,即最小,由題意可得,設(shè)切線PA的方程為:,,整理可得,,可得,將代入,可得,所以,即P的橫坐標(biāo)為1,即P的坐標(biāo),所以,,所以的最大值為:,故選:B【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題主要考查了拋物線的簡單性質(zhì).解題的關(guān)鍵是利用了拋物線的定義.一般和拋物線有關(guān)的小題,很多時(shí)可以應(yīng)用結(jié)論來處理的;平時(shí)練習(xí)時(shí)應(yīng)多注意拋物線的結(jié)論的總結(jié)和應(yīng)用.尤其和焦半徑聯(lián)系的題目,一般都和定義有關(guān),實(shí)現(xiàn)點(diǎn)點(diǎn)距和點(diǎn)線距的轉(zhuǎn)化9、B【解析】由直線方程的性質(zhì)依次判斷各命題即可得出結(jié)果.【詳解】對(duì)于①,直線,令,則,直線在軸上的截距為-,則①錯(cuò)誤;對(duì)于②,直線的斜率為,傾斜角為,則②正確;對(duì)于③直線,由點(diǎn)斜式方程可知直線必過定點(diǎn),則③正確;對(duì)于④,兩條平行直線與間的距離為,則④錯(cuò)誤.故選:B.10、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點(diǎn)斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.11、D【解析】根據(jù),解不等式即可求解.【詳解】由方程表示圓,則,解得.所以實(shí)數(shù)m的取值范圍為.故選:D12、B【解析】根據(jù)互相垂直的兩直線的性質(zhì)進(jìn)行求解即可.【詳解】由,因此直線的斜率為,直線的斜率為,因?yàn)閮芍本€與互相垂直,所以,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出、、的值,即可得出橢圓的離心率.【詳解】在橢圓中,,,,因此,橢圓的離心率是.故答案為:.14、【解析】根據(jù)雙曲線的定義由焦點(diǎn)坐標(biāo)求出,即可得到雙曲線方程,從而得到其漸近線方程;【詳解】解:因?yàn)殡p曲線C:的一個(gè)焦點(diǎn)坐標(biāo)為,即,,又,所以,所以雙曲線方程為,所以雙曲線的漸近線為;故答案為:15、1【解析】求得函數(shù)的導(dǎo)數(shù),計(jì)算得,即可得到切線的斜率【詳解】由題意,函數(shù),則,所以,即切線的斜率為1,故答案為:116、①.##1.5②.【解析】求得焦點(diǎn)到漸近線的距離可得,計(jì)算即可求得離心率,由雙曲線的定義可求得,計(jì)算即可得出結(jié)果.【詳解】雙曲線的漸近線方程為,即,焦點(diǎn)到漸近線的距離為,又,,,,.雙曲線上任意一點(diǎn)到兩焦點(diǎn)距離之差的絕對(duì)值為,即,,即,解得:,由,解得:,.雙曲線C的方程為.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、見解析【解析】將代入式子,得到,,進(jìn)而進(jìn)行化簡,最后通過基本不等式證明問題.【詳解】∵,,,∴,.∴=,當(dāng)且僅當(dāng),即時(shí)取“=”18、(1);(2)最大值與最小值分別為與【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義求出切線的斜率即可求出結(jié)果;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進(jìn)而結(jié)合函數(shù)的單調(diào)性即可求出最值.【詳解】(1)因?yàn)?,所以所以所以的圖象在點(diǎn)處的切線方程為,即(2)由(1)知令,則;令,則所以在上單調(diào)遞減,在上單調(diào)遞增.所以又,所以所以在上的最大值與最小值分別為與19、(1)拋物線的焦點(diǎn)或拋物面的焦點(diǎn)(2)答案見解析【解析】(1)結(jié)合通徑的特點(diǎn)可猜想得到結(jié)果;(2)將問題轉(zhuǎn)化為當(dāng)時(shí),只要過點(diǎn),則中點(diǎn)到的距離最小,根據(jù),結(jié)合拋物線定義可得結(jié)論.【小問1詳解】根據(jù)通徑的特征,知通徑會(huì)經(jīng)過拋物線的焦點(diǎn)達(dá)到靜止?fàn)顟B(tài),則可猜想細(xì)棒交匯點(diǎn)位置為:拋物線焦點(diǎn)或拋物面的焦點(diǎn).【小問2詳解】解釋上述現(xiàn)象,即證:當(dāng)(為拋物線通徑)時(shí),只要過點(diǎn),則中點(diǎn)到的距離最??;如圖所示,記點(diǎn)在拋物線準(zhǔn)線上的射影分別是,,由拋物線定義知:,當(dāng)過拋物線焦點(diǎn)時(shí),點(diǎn)到準(zhǔn)線距離取得最小值,最小值為的一半,此時(shí)點(diǎn)到軸距離最小.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查拋物線的實(shí)際應(yīng)用問題,解題關(guān)鍵是能夠?qū)栴}轉(zhuǎn)化為拋物線焦點(diǎn)弦的中點(diǎn)到軸距離最小問題的證明,通過拋物線的定義可證得結(jié)論.20、(1)a=2,(2)【解析】(1)由題意可得a=2,,求出,從而可求得橢圓方程,(2)由題意可求出的坐標(biāo),則可求出直線PQ的方程,然后將直線方程與橢圓方程聯(lián)立,消去,利用根與系數(shù)的關(guān)系,求出的值,從而可求出的值【小問1詳解】由橢圓定義可得2a=4,所以a=2,又因點(diǎn)在橢圓C上,所以,解得:,所以a的值為2,橢圓C的方程為【小問2詳解】由橢圓的方程可得,,,所以,所以直線PQ的方程為,設(shè),,由可得,所以,,所以,所以21、(1),證明見解析(2)(3)證明見解析【解析】(1)根據(jù)已知條件設(shè)出直線方程及,與拋物線的方程聯(lián)立,利用韋達(dá)定理和中點(diǎn)坐標(biāo)公式,三點(diǎn)共線的性質(zhì)即可求解;(2)根據(jù)已知條件得出,運(yùn)用韋達(dá)定理和弦長公式,可得出直線的斜率;(3)根據(jù)(1)的結(jié)論及求根公式,求得點(diǎn)的坐標(biāo),結(jié)合的表達(dá)式,結(jié)合圖形可知,由的范圍和的取值即可證明.【小問1詳解】由題意可知,拋物線的焦點(diǎn)為,設(shè)直線的方程為,則,消去,得,,,所以直線的方程為,由因?yàn)槿c(diǎn)共線,所以,,同理,,,所以,所以.【小問2詳解】因?yàn)镻、Q是線段MN的三等分點(diǎn),所以,,,又,,所以,所以,解得或(舍)所以直線AB的斜率為.【小問3詳解】由(1)知,,得,所以,,又,,,,當(dāng)時(shí),,由圖可知,,而只要,就有,所以當(dāng)P、Q不是線段MN的三等分點(diǎn)時(shí),以點(diǎn)Q為圓心、線段QO長為半徑的圓Q不可能包圍線段NP22、(1);(2)證明見解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標(biāo),從而可求的直線方程;(2)設(shè),直線(或),則可用兩點(diǎn)的坐標(biāo)表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達(dá)定理可化簡前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的上頂點(diǎn),則.又過點(diǎn),故直線由可得,解得即點(diǎn),又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 高等院校教育教學(xué)質(zhì)量管理策略與實(shí)施路徑分析
- 二零二五年度公租房建設(shè)項(xiàng)目合同更新與優(yōu)化合同3篇
- 2024年銀行保安雇傭合同3篇
- 2025年廣東省建筑安全員A證考試題庫
- 2024版變電站工程咨詢服務(wù)協(xié)議版B版
- 二零二五年工地食堂承包與餐飲服務(wù)可持續(xù)發(fā)展合同3篇
- 2024年采購合同標(biāo)準(zhǔn)文本6篇
- 三級(jí)醫(yī)院護(hù)理部主任述職報(bào)告
- 四旋翼無人機(jī)教育培訓(xùn)
- 【創(chuàng)新設(shè)計(jì)】2021高考化學(xué)(廣東專用)二輪專題題組訓(xùn)練-上篇-專題四-化學(xué)實(shí)驗(yàn)-第14講考點(diǎn)3
- 《東南亞經(jīng)濟(jì)與貿(mào)易》習(xí)題集、案例、答案、參考書目
- 燒烤店裝修合同范文模板
- 2024年中國櫻桃番茄種市場調(diào)查研究報(bào)告
- 數(shù)據(jù)分析基礎(chǔ)與應(yīng)用指南
- 吉林市2024-2025學(xué)年度高三第一次模擬測試 (一模)數(shù)學(xué)試卷(含答案解析)
- 自考《英語二》高等教育自學(xué)考試試題與參考答案(2024年)
- 人教版(PEP)小學(xué)六年級(jí)英語上冊全冊教案
- 廣東省廣州市海珠區(qū)2023-2024學(xué)年六年級(jí)上學(xué)期月考英語試卷
- 《春秋》導(dǎo)讀學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 消防水域救援個(gè)人防護(hù)裝備試驗(yàn) 大綱
- 機(jī)電樣板施工主要技術(shù)方案
評(píng)論
0/150
提交評(píng)論