![chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第1頁](http://file4.renrendoc.com/view7/M02/2F/2D/wKhkGWcNdvaAaxwjAAAwYKDgZeA620.jpg)
![chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第2頁](http://file4.renrendoc.com/view7/M02/2F/2D/wKhkGWcNdvaAaxwjAAAwYKDgZeA6202.jpg)
![chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第3頁](http://file4.renrendoc.com/view7/M02/2F/2D/wKhkGWcNdvaAaxwjAAAwYKDgZeA6203.jpg)
![chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第4頁](http://file4.renrendoc.com/view7/M02/2F/2D/wKhkGWcNdvaAaxwjAAAwYKDgZeA6204.jpg)
![chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第5頁](http://file4.renrendoc.com/view7/M02/2F/2D/wKhkGWcNdvaAaxwjAAAwYKDgZeA6205.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
FinalValueTheoremFinalValueTheoremTheFINALVALUETHEOREMcanbeusedtodeducethevalueatwhichasystemwillsettle,onceallofthetransientshavediedawayThisisveryusefulforlookingatSTEADYSTATEERRORwhichisthedifferencebetweenthedemand,R(s),andtheoutputofasystem,C(s)afterallofthetransientshaveendedThefinalvaluetheoremisdefinedas:So,inordertofindtheresponseofatransferfunctiontoaninputafterallofthetransientshavediedawaywemultiplyitbys,thensets=0intheresultingequation,andsolvewhat’slefttoworkoutthefinalvalue.TherearetwoimportantcircumstancestowhichFVTcannotbeapplied
UNSTABLESYSTEM-thereisnotfinalvalue!2.PURELYOSCILLATORYSystem-i.e.rootsoncomplexaxis…becausethiswillcontinuetooscillate(nofinalvalue)Findthefinalvalue(i.e.thesteadystatevalue)ofthefollowingsystem,assumingastepchangeinputof10
6FinalValueTheorem:ExampleFinalValueTheorem:ProcedureProcedureforapplyingthefinalvaluetheorem1.Derivetheoutputtransferfunction,C(s)2.MultiplyC(s)bys3.CalculatevalueofsC(s)whenstendstozero4.Theresultisthevalueofc(t)whenttendstoinfinityC.InitialvaluetheorembyinitialvaluetheorembyfinalvaluetheoremChapter3FrequencyResponseofSystemsFrequencyResponseThereareothermethodswhichcanbeusedtodeterminetheoperationalbehavioursofasystem-anotheronewhichwewillconsideristheFREQUENCYRESPONSEConsidertheFollowingSystemIfr(t)=Acos(t)DifferentMagnitudeDifferentPhaseSameFrequency(LinearSystem)TherelativemagnitudeandphasedependsonG(s)andonthefrequencyoftheinputsignal-thiswilllinktotheworkthatyoudoonfiltersontheSignalProcessingpartofthecourse.IMPORTANTNOTE:Thesearesteadystaterelationships-sowedonotgaindirectinformationaboutthetransientresponsefromthis-butwecanusethefrequencyresponseinformationtogetanideaofthetransientresponseofthesystem
R(s)C(s)c(t)=Bcos(t+)Let’sconsidertheprobleminaslightlydifferentformatConsiderthefollowingsystem:BothBandwillvarywithfrequency,.ThereforewehaveC(j)expressedasacomplexfunctionof
OscillatorVariesandA(Magnitude)SYSTEMUNDERTESTCouldbeoneofthefiltercircuitsyou’velookedatDisplayAnalyserorPhase&GainMeteretc.FrequencyResponse:DerivationIExperimentalDerivation:
Bycontrollingtheoscillatoratdifferentfrequenciesandlookingatoutputofthesystem,itispossibletoderivethegainandphaseforarangeoffrequenciesandtabulatingthemLikethis…Whydowetakethelogofthegain?Becauseitmakesiteasiertolookatsystemswhichhaveverysignificantchangesingainovertheconsideredfrequencyrange-thiswilleclearwhenyoulookatBodePlots(seelater)Furthertothis-usinglogscanmakeBodePlotsveryeasytoderivefromatransferfunction(seelater)
B/A
20log(B/A)FrequencysetonoscillatorGainofSYSTEMPhaseofSYSTEMLogofGAINFrequencyResponse:DerivationIIGraphicalRepresentationoftheFrequencyResponseINyquistPlotsIfwetakeeachoftheseinturnanddrawthemonseparatephasordiagramsforeachfrequency:
B/A
.........FirstconsiderthephaseandgainatarangeoffrequenciesforthesystemundertestM1M2
2M3
3
3
2
1
1NyquistPlotscontinuedThisisusuallyplottedwithoutthelinesofMforclarity.NyquistplotsandinverseNyquistplotsareusedforstabilityanalysisandarerelatedtotheNyquistStabilityTheorem(notcoveredinthismodule)AnotherfrequencybasedresponseistheuseofBodeDiagrams-thesedemonstratethemagnitudeandphaseofasystemasafunctionoffrequency.ThesewillbecoveredbyDr.WoolfsonastheyarealsousedextensivelyforfilteringapplicationsPlottingallthree(andmore!)onasinglediagramgives:M2M1M3NyquistPlotLocusofphasorsforM(j)GraphicalRepresentationoftheFrequencyResponseIINyquistplotexampleOpenloopsystemhaspoleat2Closed-loopsystemhaspoleat1Ifwemultiplytheopen-loopwithagain,K,thenwecanmovetheclosed-looppole’spositiontotheleft-halfplanePerformanceSpecificationandSystemErrorPerformanceSpecificationLet’sconsiderasecondorderresponsetressMpMp-PeakOvershootMaximumamountbywhichtheresponsepassesthereferenceinthefirstoscillationtr-RiseTimeTimetoreachthereferencepointthefirsttime(otherdefinitionsexist)ess-SteadyStateErrorDifferencebetweenreferenceandactualoutputwhenalloscillationshavediedawaytimeWhyisPerformanceSpecificationimportant?Example1:1.4VdcsourcewhichfeedsaCPUonaPCess=CouldaffectoperationoftheCPUifthesteadystateerrorissignificantMp=CouldaffectoperationandlifetimeoftheCPUorresultinimmediatedamageiftoohightr=IftooslowtheCPUmaynotoperatecorrectlyorthevoltagesourcemaynotrespondwelltochangesinloadExample2:Computercontrolledcuttingmachineess=PooraccuracyincuttingasdemandedpositionisnotachievedMp=Toolgoespastreferenceandruinsthepiecebeingprintedtr=Cuttingofpiecetakesalongtime
TheeffectofdampingonMpandtr
SteadyStateErrorAnalysis:ErrorfunctionConsideringourclosedloopsystem-let’sderiveatransferfunctionwhichtellsushowtheError,E(s),respondstoaninputR(s)
G(s)E(s)R(s)C(s)+-
WecouldapplytheFinalValueTheoremtothisinordertoderivewhatthefinalerrorvaluewillbe-thisisoursteadystateerror,ess
SteadyStateErrorAnalysis:StepInput
Thiscanalsobeconsideredintheform:
WhereK0iscalledthePositionErrorConstantandiscalculatedas
SteadyStateErrorAnalysis:RampInput
Thiscanalsobeconsideredintheform:
WhereK1iscalledtheVelocityErrorConstantandiscalculatedas
SteadyStateErrorAnalysis:ParabolicInput
Thiscanalsobeconsideredintheform:
WhereK2iscalledtheAccelerationErrorConstantandiscalculatedas
SystemTypesandInputTypesInputType(m):
UnityStepInput:UnityRampInput:
UnityParabolicInput:Type0InputType1InputType2InputTypemInput
SystemType(n):Determinedbythenumberoffreeintegratorsinthesystemtransferfunctioni.e.
AreType1Systems
AreType2Transferfunctions
AreTypenTransferfunctionsSteadyStateErrorAnalysis:GeneralIngeneraltermswecanlinkthesteadystateerrorconstantstothesystemnumber,n,andinputnumber,m,asfollows
InputType(m)SystemType(n)012010200n=SystemNumberm=InputNumberNote:Ifm>nthesteadystateerrorisinfinite;ifm=nithasafinitevalue,if(m<n)theerroriszeroHowdoweimprovesystemresponseI(s)I(s)*+-
Consideraunityfeedbacksystem-herewefeederrorintoanamplifierwhichappliesvoltagetoacircuit-forsimplicitywewillassumethatthefeedbackloophasunitygain
A
Itisclearthatbyimprovingthegainoftheamplifier,wecanreducethiserrorbutpracticallyspeakingtherearelimitstohowhighthiscanbeset-sohowdoweimprovethesituation?ControlDesignNote:Type0input,Type0systemControlDesignControldesigndescribestheapproachofaddingpolesandzerostothesystembeingcontrolledinanefforttoimproveit’sresponsetochangesininputorchangesintheenvironment.Weknowthatincreasingthesystemnumberwilldecreasetheerrorinthestepresponse-let’sstartwiththis.Wewilladdanintegratortotheforwardpathtransferfunction-withagainK.I(s)I(s)*+-
A
Sowehaveimprovedtheerror-whatabouttheshapeoftheresponse?ControlDesignIII(s)I(s)*+-
A
NotethatifweassumethatAisfixedbythehardwarethatweareusing-Kisdeterminedeithersettingthedampingfactortoacertainvalueorthenaturalfrequency-theyarenotindependent…h(huán)owcanweimprovethis?Let’saddanintegratorintheforwardpath:ControlDesignIIII(s)I(s)*+-
A
Nowwehavetwovariablestosetthedampingfactorandthenaturalfrequencyoftheresponse-wecanthereforegettheresponsethatwewantfromthesystemInthiscasewehaveusedaProportional+Integral(P+I)controllerMethodsofControlDesignThemethodusedabove,whereweessentiallycomparethecoefficientsofthecharacteristicequationtothestandardformofthesameorderworksforsimplecasesonly-thissitheonlymethodwewilluseinthismoduleFormorecomplexorhigherordersystemswecan:Reducesystemorderbyneglectingnon-dominantpoles-onlyworksinsomecasesUseControlDesignMethodsRootLocusDesignMethodBodePlotDesignMethodBothofthelattermethodsarestudiedinH63CSD-CONTROLSYSTEMSDESIGNHowdoweimplementthecontroltransferfunctionthatwehavedeveloped?UsingOperationalAmplifiersUsingamicroprocessorormicrocontroller(coveredinH63CSD)ImplementingTransferFunctionsusingOp-AmpsTransferfunctioncanbeimplementedinelectroniccircuitformusingOp-AmpsThesearecommonlyusedinthecontrols
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年變色玻璃幕墻廣告牌企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年塑木兒童游樂設(shè)施行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報(bào)告
- 2025-2030年新型鉆井液添加劑企業(yè)制定與實(shí)施新質(zhì)生產(chǎn)力戰(zhàn)略研究報(bào)告
- 2025-2030年原產(chǎn)地核桃直供平臺(tái)行業(yè)跨境出海戰(zhàn)略研究報(bào)告
- 血壓調(diào)節(jié)用品項(xiàng)目績效評估報(bào)告
- 2025年度企業(yè)空調(diào)設(shè)備維修保養(yǎng)及預(yù)防性維護(hù)合同
- 2025年度公司內(nèi)部股東股權(quán)增資與轉(zhuǎn)讓合同
- 2025年度建筑工程合同爭議解決合同范本及仲裁條款
- 2025年度文化產(chǎn)業(yè)發(fā)展項(xiàng)目保密及合作開發(fā)合同
- 2025年度新型城鎮(zhèn)化建設(shè)綜合開發(fā)合同匯編
- 托育園老師培訓(xùn)
- 人教版八年級英語上冊Unit1-10完形填空閱讀理解專項(xiàng)訓(xùn)練
- 脊柱外科護(hù)理進(jìn)修心得
- 4.1中國特色社會(huì)主義進(jìn)入新時(shí)代+課件-2024-2025學(xué)年高中政治統(tǒng)編版必修一中國特色社會(huì)主義
- 護(hù)理工作中的人文關(guān)懷
- 完整液壓系統(tǒng)課件
- 2024年山東省青島市中考道德與法治試題卷(含答案及解析)
- 生產(chǎn)制造工藝流程規(guī)范與作業(yè)指導(dǎo)書
- 班級建設(shè)方案中等職業(yè)學(xué)校班主任能力大賽
- T-TJSG 001-2024 天津市社會(huì)組織社會(huì)工作專業(yè)人員薪酬指導(dǎo)方案
- 芯片設(shè)計(jì)基礎(chǔ)知識題庫100道及答案(完整版)
評論
0/150
提交評論