chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第1頁
chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第2頁
chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第3頁
chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第4頁
chapter finaland initial value theroem frequency response performance specification system error章節(jié)終值初值定理頻率響應(yīng)性能規(guī)格系統(tǒng)誤差_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

FinalValueTheoremFinalValueTheoremTheFINALVALUETHEOREMcanbeusedtodeducethevalueatwhichasystemwillsettle,onceallofthetransientshavediedawayThisisveryusefulforlookingatSTEADYSTATEERRORwhichisthedifferencebetweenthedemand,R(s),andtheoutputofasystem,C(s)afterallofthetransientshaveendedThefinalvaluetheoremisdefinedas:So,inordertofindtheresponseofatransferfunctiontoaninputafterallofthetransientshavediedawaywemultiplyitbys,thensets=0intheresultingequation,andsolvewhat’slefttoworkoutthefinalvalue.TherearetwoimportantcircumstancestowhichFVTcannotbeapplied

UNSTABLESYSTEM-thereisnotfinalvalue!2.PURELYOSCILLATORYSystem-i.e.rootsoncomplexaxis…becausethiswillcontinuetooscillate(nofinalvalue)Findthefinalvalue(i.e.thesteadystatevalue)ofthefollowingsystem,assumingastepchangeinputof10

6FinalValueTheorem:ExampleFinalValueTheorem:ProcedureProcedureforapplyingthefinalvaluetheorem1.Derivetheoutputtransferfunction,C(s)2.MultiplyC(s)bys3.CalculatevalueofsC(s)whenstendstozero4.Theresultisthevalueofc(t)whenttendstoinfinityC.InitialvaluetheorembyinitialvaluetheorembyfinalvaluetheoremChapter3FrequencyResponseofSystemsFrequencyResponseThereareothermethodswhichcanbeusedtodeterminetheoperationalbehavioursofasystem-anotheronewhichwewillconsideristheFREQUENCYRESPONSEConsidertheFollowingSystemIfr(t)=Acos(t)DifferentMagnitudeDifferentPhaseSameFrequency(LinearSystem)TherelativemagnitudeandphasedependsonG(s)andonthefrequencyoftheinputsignal-thiswilllinktotheworkthatyoudoonfiltersontheSignalProcessingpartofthecourse.IMPORTANTNOTE:Thesearesteadystaterelationships-sowedonotgaindirectinformationaboutthetransientresponsefromthis-butwecanusethefrequencyresponseinformationtogetanideaofthetransientresponseofthesystem

R(s)C(s)c(t)=Bcos(t+)Let’sconsidertheprobleminaslightlydifferentformatConsiderthefollowingsystem:BothBandwillvarywithfrequency,.ThereforewehaveC(j)expressedasacomplexfunctionof

OscillatorVariesandA(Magnitude)SYSTEMUNDERTESTCouldbeoneofthefiltercircuitsyou’velookedatDisplayAnalyserorPhase&GainMeteretc.FrequencyResponse:DerivationIExperimentalDerivation:

Bycontrollingtheoscillatoratdifferentfrequenciesandlookingatoutputofthesystem,itispossibletoderivethegainandphaseforarangeoffrequenciesandtabulatingthemLikethis…Whydowetakethelogofthegain?Becauseitmakesiteasiertolookatsystemswhichhaveverysignificantchangesingainovertheconsideredfrequencyrange-thiswilleclearwhenyoulookatBodePlots(seelater)Furthertothis-usinglogscanmakeBodePlotsveryeasytoderivefromatransferfunction(seelater)

B/A

20log(B/A)FrequencysetonoscillatorGainofSYSTEMPhaseofSYSTEMLogofGAINFrequencyResponse:DerivationIIGraphicalRepresentationoftheFrequencyResponseINyquistPlotsIfwetakeeachoftheseinturnanddrawthemonseparatephasordiagramsforeachfrequency:

B/A

.........FirstconsiderthephaseandgainatarangeoffrequenciesforthesystemundertestM1M2

2M3

3

3

2

1

1NyquistPlotscontinuedThisisusuallyplottedwithoutthelinesofMforclarity.NyquistplotsandinverseNyquistplotsareusedforstabilityanalysisandarerelatedtotheNyquistStabilityTheorem(notcoveredinthismodule)AnotherfrequencybasedresponseistheuseofBodeDiagrams-thesedemonstratethemagnitudeandphaseofasystemasafunctionoffrequency.ThesewillbecoveredbyDr.WoolfsonastheyarealsousedextensivelyforfilteringapplicationsPlottingallthree(andmore!)onasinglediagramgives:M2M1M3NyquistPlotLocusofphasorsforM(j)GraphicalRepresentationoftheFrequencyResponseIINyquistplotexampleOpenloopsystemhaspoleat2Closed-loopsystemhaspoleat1Ifwemultiplytheopen-loopwithagain,K,thenwecanmovetheclosed-looppole’spositiontotheleft-halfplanePerformanceSpecificationandSystemErrorPerformanceSpecificationLet’sconsiderasecondorderresponsetressMpMp-PeakOvershootMaximumamountbywhichtheresponsepassesthereferenceinthefirstoscillationtr-RiseTimeTimetoreachthereferencepointthefirsttime(otherdefinitionsexist)ess-SteadyStateErrorDifferencebetweenreferenceandactualoutputwhenalloscillationshavediedawaytimeWhyisPerformanceSpecificationimportant?Example1:1.4VdcsourcewhichfeedsaCPUonaPCess=CouldaffectoperationoftheCPUifthesteadystateerrorissignificantMp=CouldaffectoperationandlifetimeoftheCPUorresultinimmediatedamageiftoohightr=IftooslowtheCPUmaynotoperatecorrectlyorthevoltagesourcemaynotrespondwelltochangesinloadExample2:Computercontrolledcuttingmachineess=PooraccuracyincuttingasdemandedpositionisnotachievedMp=Toolgoespastreferenceandruinsthepiecebeingprintedtr=Cuttingofpiecetakesalongtime

TheeffectofdampingonMpandtr

SteadyStateErrorAnalysis:ErrorfunctionConsideringourclosedloopsystem-let’sderiveatransferfunctionwhichtellsushowtheError,E(s),respondstoaninputR(s)

G(s)E(s)R(s)C(s)+-

WecouldapplytheFinalValueTheoremtothisinordertoderivewhatthefinalerrorvaluewillbe-thisisoursteadystateerror,ess

SteadyStateErrorAnalysis:StepInput

Thiscanalsobeconsideredintheform:

WhereK0iscalledthePositionErrorConstantandiscalculatedas

SteadyStateErrorAnalysis:RampInput

Thiscanalsobeconsideredintheform:

WhereK1iscalledtheVelocityErrorConstantandiscalculatedas

SteadyStateErrorAnalysis:ParabolicInput

Thiscanalsobeconsideredintheform:

WhereK2iscalledtheAccelerationErrorConstantandiscalculatedas

SystemTypesandInputTypesInputType(m):

UnityStepInput:UnityRampInput:

UnityParabolicInput:Type0InputType1InputType2InputTypemInput

SystemType(n):Determinedbythenumberoffreeintegratorsinthesystemtransferfunctioni.e.

AreType1Systems

AreType2Transferfunctions

AreTypenTransferfunctionsSteadyStateErrorAnalysis:GeneralIngeneraltermswecanlinkthesteadystateerrorconstantstothesystemnumber,n,andinputnumber,m,asfollows

InputType(m)SystemType(n)012010200n=SystemNumberm=InputNumberNote:Ifm>nthesteadystateerrorisinfinite;ifm=nithasafinitevalue,if(m<n)theerroriszeroHowdoweimprovesystemresponseI(s)I(s)*+-

Consideraunityfeedbacksystem-herewefeederrorintoanamplifierwhichappliesvoltagetoacircuit-forsimplicitywewillassumethatthefeedbackloophasunitygain

A

Itisclearthatbyimprovingthegainoftheamplifier,wecanreducethiserrorbutpracticallyspeakingtherearelimitstohowhighthiscanbeset-sohowdoweimprovethesituation?ControlDesignNote:Type0input,Type0systemControlDesignControldesigndescribestheapproachofaddingpolesandzerostothesystembeingcontrolledinanefforttoimproveit’sresponsetochangesininputorchangesintheenvironment.Weknowthatincreasingthesystemnumberwilldecreasetheerrorinthestepresponse-let’sstartwiththis.Wewilladdanintegratortotheforwardpathtransferfunction-withagainK.I(s)I(s)*+-

A

Sowehaveimprovedtheerror-whatabouttheshapeoftheresponse?ControlDesignIII(s)I(s)*+-

A

NotethatifweassumethatAisfixedbythehardwarethatweareusing-Kisdeterminedeithersettingthedampingfactortoacertainvalueorthenaturalfrequency-theyarenotindependent…h(huán)owcanweimprovethis?Let’saddanintegratorintheforwardpath:ControlDesignIIII(s)I(s)*+-

A

Nowwehavetwovariablestosetthedampingfactorandthenaturalfrequencyoftheresponse-wecanthereforegettheresponsethatwewantfromthesystemInthiscasewehaveusedaProportional+Integral(P+I)controllerMethodsofControlDesignThemethodusedabove,whereweessentiallycomparethecoefficientsofthecharacteristicequationtothestandardformofthesameorderworksforsimplecasesonly-thissitheonlymethodwewilluseinthismoduleFormorecomplexorhigherordersystemswecan:Reducesystemorderbyneglectingnon-dominantpoles-onlyworksinsomecasesUseControlDesignMethodsRootLocusDesignMethodBodePlotDesignMethodBothofthelattermethodsarestudiedinH63CSD-CONTROLSYSTEMSDESIGNHowdoweimplementthecontroltransferfunctionthatwehavedeveloped?UsingOperationalAmplifiersUsingamicroprocessorormicrocontroller(coveredinH63CSD)ImplementingTransferFunctionsusingOp-AmpsTransferfunctioncanbeimplementedinelectroniccircuitformusingOp-AmpsThesearecommonlyusedinthecontrols

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論