2025屆天津市濱海新區(qū)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁(yè)
2025屆天津市濱海新區(qū)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁(yè)
2025屆天津市濱海新區(qū)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁(yè)
2025屆天津市濱海新區(qū)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁(yè)
2025屆天津市濱海新區(qū)高二上數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆天津市濱海新區(qū)高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.魏晉時(shí)期數(shù)學(xué)家劉徽首創(chuàng)割圓術(shù),他在《九章算術(shù)》方田章圓田術(shù)中指出:“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣.”這是注述中所用的割圓術(shù)是一種無(wú)限與有限的轉(zhuǎn)化過程,比如在正數(shù)中的“”代表無(wú)限次重復(fù),設(shè),則可以利用方程求得,類似地可得到正數(shù)()A.2 B.3C. D.2.某單位有840名職工,現(xiàn)采用系統(tǒng)抽樣方法,抽取42人做問卷調(diào)查,將840人按1,2,…,840隨機(jī)編號(hào),則抽取的42人中,編號(hào)落入?yún)^(qū)間[481,720]的人數(shù)為A.11 B.12C.13 D.143.已知直線過點(diǎn),且與直線垂直,則直線的方程為()A. B.C. D.4.已知函數(shù)的值域?yàn)?,則實(shí)數(shù)的取值范圍是()A. B.C. D.5.已知隨機(jī)變量X,Y滿足,,且,則的值為()A.0.2 B.0.3C.0..5 D.0.66.已知,,,則點(diǎn)C到直線AB的距離為()A.3 B.C. D.7.已知雙曲線,過左焦點(diǎn)且與軸垂直的直線與雙曲線交于、兩點(diǎn),若弦的長(zhǎng)恰等于實(shí)鈾的長(zhǎng),則雙曲線的離心率為()A. B.C. D.8.圓與圓的交點(diǎn)為A,B,則線段AB的垂直平分線的方程是A. B.C. D.9.如圖是拋物線拱形橋,當(dāng)水面在時(shí),拱頂離水面,水面寬,若水面上升,則水面寬是()(結(jié)果精確到)(參考數(shù)值:)A B.C. D.10.圓與直線的位置關(guān)系為()A.相切 B.相離C.相交 D.無(wú)法確定11.函數(shù),的最小值為()A.2 B.3C. D.12.若“”是“”的充分不必要條件,則實(shí)數(shù)m的值為()A.1 B.C.或1 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知矩形的長(zhǎng)為2,寬為1,以該矩形的邊所在直線為軸旋轉(zhuǎn)一周得到的幾何體的表面積為___________.14.已知拋物線C:,經(jīng)過點(diǎn)P(4,1)的直線l與拋物線C相交于A,B兩點(diǎn),且點(diǎn)P恰為AB的中點(diǎn),F(xiàn)為拋物線的焦點(diǎn),則______15.若斜率為的直線與橢圓交于,兩點(diǎn),且的中點(diǎn)坐標(biāo)為,則___________.16.設(shè)函數(shù)滿足,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知△ABC的內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且.(1)求角C的大??;(2)若,求△ABC面積的最大值.18.(12分)已知圓:,點(diǎn)A是圓上一動(dòng)點(diǎn),點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求點(diǎn)的軌跡方程;(2)直線過點(diǎn)且與點(diǎn)的軌跡交于A,兩點(diǎn),若,求直線的方程.19.(12分)如圖所示,在三棱柱中,平面,,,,點(diǎn),分別在棱和棱上,且,,點(diǎn)為棱的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.20.(12分)已知的三個(gè)內(nèi)角,,的對(duì)邊分別為,,,且滿足.(1)求角的大??;(2)若,,,求的長(zhǎng).21.(12分)已知拋物線C:上有一動(dòng)點(diǎn),,過點(diǎn)P作拋物線C的切線交y軸于點(diǎn)Q(1)判斷線段PQ的垂直平分線是否過定點(diǎn)?若過,求出定點(diǎn)坐標(biāo);若不過,請(qǐng)說明理由;(2)過點(diǎn)P作垂線交拋物線C于另一點(diǎn)M,若切線的斜率為k,設(shè)的面積為S,求的最小值22.(10分)雙曲線的離心率為,虛軸的長(zhǎng)為4.(1)求的值及雙曲線的漸近線方程;(2)直線與雙曲線相交于互異兩點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè),則,解方程可得結(jié)果.【詳解】設(shè),則且,所以,所以,所以,所以或(舍).所以.故選:A【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:設(shè)是解題關(guān)鍵.2、B【解析】使用系統(tǒng)抽樣方法,從840人中抽取42人,即從20人抽取1人∴從編號(hào)1~480的人中,恰好抽取480/20=24人,接著從編號(hào)481~720共240人中抽取240/20=12人考點(diǎn):系統(tǒng)抽樣3、A【解析】求出直線斜率,利用點(diǎn)斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.4、D【解析】求出函數(shù)在時(shí)值的集合,函數(shù)在時(shí)值的集合,再由已知并借助集合包含關(guān)系即可作答.【詳解】當(dāng)時(shí),在上單調(diào)遞增,,,則在上值的集合是,當(dāng)時(shí),,,當(dāng)時(shí),,當(dāng)時(shí),,即在上單調(diào)遞減,在上單調(diào)遞增,,,則在上值的集合為,因函數(shù)的值域?yàn)?,于是得,則,解得,所以實(shí)數(shù)的取值范圍是.故選:D5、D【解析】利用正態(tài)分布的計(jì)算公式:,【詳解】且又故選:D6、D【解析】應(yīng)用空間向量的坐標(biāo)運(yùn)算求在上投影長(zhǎng)及的模長(zhǎng),再應(yīng)用勾股定理求點(diǎn)C到直線AB的距離.【詳解】因?yàn)?,,所以設(shè)點(diǎn)C到直線AB的距離為d,則故選:D7、B【解析】求出,進(jìn)而求出,之間的關(guān)系,即可求解結(jié)論【詳解】解:由題意,直線方程為:,其中,因此,設(shè),,,,解得,得,,弦的長(zhǎng)恰等于實(shí)軸的長(zhǎng),,,故選:B8、A【解析】圓的圓心為,圓的圓心為,兩圓的相交弦的垂直平分線即為直線,其方程為,即;故選A.【點(diǎn)睛】本題考查圓的一般方程、兩圓的相交弦問題;處理直線和圓、圓和圓的位置關(guān)系時(shí),往往結(jié)合平面幾何知識(shí)(如本題中,求兩圓的相交弦的垂直平分線的方程即為經(jīng)過兩圓的圓心的直線方程)可減小運(yùn)算量.9、C【解析】先建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,將點(diǎn)坐標(biāo)代入拋物線方程求出m,從而可得拋物線方程,再令y=代入拋物線方程求出x,即可得到答案【詳解】解:如圖建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,由題意,將代入x2=my,得m=,所以拋物線的方程為x2=,令y=,解得,所以水面寬度為2.24×817.9m故選:C10、C【解析】先計(jì)算出直線恒過定點(diǎn),而點(diǎn)在圓內(nèi),所以圓與直線相交.【詳解】直線可化為,所以恒過定點(diǎn).把代入,有:,所以在圓內(nèi),所以圓與直線的位置關(guān)系為相交.故選:C11、B【解析】求導(dǎo)函數(shù),分析單調(diào)性即可求解最小值【詳解】由,得,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增∴當(dāng)時(shí),取得最小值,且最小值為故選:B.12、B【解析】利用定義法進(jìn)行判斷.【詳解】把代入,得:,解得:或.當(dāng)時(shí),可化為:,解得:,此時(shí)“”是“”的充要條件,應(yīng)舍去;當(dāng)時(shí),可化為:,解得:或,此時(shí)“”是“”的充分不必要條件.故.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、或##或【解析】分兩種情況進(jìn)行解答,①以邊長(zhǎng)為2的邊為軸旋轉(zhuǎn),②以邊長(zhǎng)為1的邊為軸旋轉(zhuǎn).進(jìn)行解答即可【詳解】解:①以邊長(zhǎng)為2的邊為軸旋轉(zhuǎn),表面積兩個(gè)底面積側(cè)面積,即:,②以邊長(zhǎng)為1的邊為軸旋轉(zhuǎn),表面積兩個(gè)底面積側(cè)面積,即:,故答案為:或14、9【解析】過A、、作準(zhǔn)線的垂線且分別交準(zhǔn)線于點(diǎn)、、,根據(jù)拋物線的定義可知,由梯形的中位線的性質(zhì)得出,進(jìn)而可求出的結(jié)果.【詳解】由拋物線,可知,則,所以拋物線的焦點(diǎn)坐標(biāo)為,如圖,過點(diǎn)A作垂直于準(zhǔn)線交準(zhǔn)線于,過點(diǎn)作垂直于準(zhǔn)線交準(zhǔn)線于,過點(diǎn)作垂直于準(zhǔn)線交準(zhǔn)線于,由拋物線的定義可得,再根據(jù)為線段的中點(diǎn),而四邊形為梯形,由梯形的中位線可知,則,所以.故答案為:9.15、-1【解析】根據(jù)給定條件設(shè)出點(diǎn)A,B的坐標(biāo),再借助“點(diǎn)差法”即可計(jì)算得解.【詳解】依題意,線段的中點(diǎn)在橢圓C內(nèi),設(shè),,由兩式相減得:,而,于是得,即,所以.故答案為:16、5【解析】考點(diǎn):函數(shù)導(dǎo)數(shù)與求值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)對(duì),利用正弦定理和誘導(dǎo)公式整理化簡(jiǎn)得到,即可求出;(2)先由正弦定理求出c,再由余弦定理和基本不等式求出ab的最大值為1,代入面積公式求面積.【小問1詳解】對(duì)于.由正弦定理知:即.所以.所以.所以因?yàn)?,,所?所以.因?yàn)?,所?【小問2詳解】因?yàn)?,由正弦定理知?由余弦定理知:,所以.當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以ab的最大值為1.所以,即面積的最大值為.18、(1);(2)x=1或y=1.【解析】(1)設(shè)線段中點(diǎn)為,點(diǎn),用x,y表示,代入方程即可;(2)分l斜率存在和不存在進(jìn)行討論,根據(jù)弦長(zhǎng)求出l方程.【小問1詳解】設(shè)線段中點(diǎn)為,點(diǎn),,,,,,即點(diǎn)C的軌跡方程為.【小問2詳解】直線l的斜率不存在時(shí),l為x=1,代入得,則弦長(zhǎng)滿足題意;直線l斜率存在時(shí),設(shè)直線l斜率為k,其方程為,即,圓的圓心到l的距離,則;綜上,l為x=1或y=1.19、(1)證明見解析(2)【解析】(1)構(gòu)建空間直角坐標(biāo)系,由已知確定相關(guān)點(diǎn)坐標(biāo),進(jìn)而求的方向向量、面的法向量,并應(yīng)用坐標(biāo)計(jì)算空間向量的數(shù)量積,即可證結(jié)論.(2)求的方向向量,結(jié)合(1)中面的法向量,應(yīng)用空間向量夾角的坐標(biāo)表示求直線與平面所成角的正弦值.【小問1詳解】以為原點(diǎn),以,,為軸、軸、軸的正方向建立空間直角坐標(biāo)系,如圖所示,可得:,,,,,,,.∴,,,設(shè)為面的法向量,則,令得,∴,即,∴平面;【小問2詳解】由(1)知:,為面的一個(gè)法向量,設(shè)與平面所成角為,則,∴直線與平面所成角的正弦值為.20、(1);(2).【解析】(1)由正弦定理化邊為角后,結(jié)合兩角和的正弦公式、誘導(dǎo)公式可求得;(2)用表示出,然后平方由數(shù)量積的運(yùn)算求得向量的模(線段長(zhǎng)度)【詳解】(1)因?yàn)?,所以由正弦定理可得,即,因?yàn)?,所以,,∵,故;?)由,得,所以,所以.21、(1)線段的垂直平分線過定點(diǎn)(2)【解析】(1)設(shè)切線的方程為,并與拋物線方程聯(lián)立,利用判別式求得點(diǎn)坐標(biāo),進(jìn)而求得點(diǎn)坐標(biāo),從而求得線段的垂直平分線的方程,進(jìn)而求得定點(diǎn)坐標(biāo).(2)結(jié)合弦長(zhǎng)公式求得的面積,利用基本不等式求得的最小值.【小問1詳解】依題意可知切線的斜率存在,且斜率大于.設(shè)直線PQ的方程為,.由消去并化簡(jiǎn)得,由得,,則,解得,所以,在中,令得,所以,PQ中點(diǎn)為,所以線段PQ的中垂線方程為,即,所以線段的垂直平分線過定點(diǎn).【小問2詳解】由(1)可知,直線PM的方程為,即.由消去并化簡(jiǎn)得:,所以,而,所以得,,,.所以的面積,所以.當(dāng)且僅當(dāng)時(shí)等號(hào)成立.所以的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論