嘉興市重點中學2025屆高一上數(shù)學期末達標檢測模擬試題含解析_第1頁
嘉興市重點中學2025屆高一上數(shù)學期末達標檢測模擬試題含解析_第2頁
嘉興市重點中學2025屆高一上數(shù)學期末達標檢測模擬試題含解析_第3頁
嘉興市重點中學2025屆高一上數(shù)學期末達標檢測模擬試題含解析_第4頁
嘉興市重點中學2025屆高一上數(shù)學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

嘉興市重點中學2025屆高一上數(shù)學期末達標檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.要得到函數(shù)y=cos的圖象,只需將函數(shù)y=cos2的圖象()A.向左平移個單位長度 B.向左平移個單位長度C.向右平移個單位長度 D.向右平移個單位長度2.已知,且在區(qū)間有最大值,無最小值,則=()A B.C. D.3.若,則的值為A. B.C. D.4.“”是“”的()A.充要條件 B.既不充分也不必要條件C.充分不必要條件 D.必要不充分條件5.為參加學校運動會,某班要從甲,乙,丙,丁四位女同學中隨機選出兩位同學擔任護旗手,那么甲同學被選中的概率是()A. B.C. D.6.用長度為24米的材料圍成一矩形場地,中間加兩道隔墻(如圖),要使矩形的面積最大,則隔墻的長度為A.3米 B.4米C.6米 D.12米7.設(shè)函數(shù)滿足,當時,,則()A.0 B.C. D.18.已知關(guān)于的方程的兩個實數(shù)根分別是、,若,則的取值范圍為()A. B.C. D.9.已知,,,則a,b,c的大小關(guān)系為()A. B.C. D.10.已知直線與圓交于A,兩點,則()A.1 B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),則函數(shù)的值域為______12.計算_____________.13.已知偶函數(shù)在單調(diào)遞減,.若,則的取值范圍是__________.14.如果,且,則化簡為_____.15.函數(shù)滿足,且在區(qū)間上,則的值為____16.已知函數(shù),則滿足的的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,已知,分別是正方體的棱,的中點.求證:平面平面.18.如圖,正三棱柱的底面邊長為3,側(cè)棱,D是CB延長線上一點,且求二面角的正切值;求三棱錐的體積19.某市3000名市民參加“美麗城市我建設(shè)”相關(guān)知識初賽,成績統(tǒng)計如圖所示(1)求a的值;(2)估計該市參加考試的3000名市民中,成績在上的人數(shù);(3)若本次初賽成績前1500名參加復賽,則進入復賽市民的分數(shù)線應當如何制定(結(jié)果保留兩位小數(shù))20.已知函數(shù)滿足,且.(1)求a和函數(shù)的解析式;(2)判斷在其定義域的單調(diào)性.21.已知且滿足不等式.(1)求不等式;(2)若函數(shù)在區(qū)間有最小值為,求實數(shù)值

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】直接利用三角函數(shù)的平移變換求解.【詳解】因函數(shù)y=cos,所以要得到函數(shù)y=cos的圖象,只需將函數(shù)y=cos2的圖象向左平移個單位長度,故選:B【點睛】本題主要考查三角函數(shù)的圖象的平移變換,屬于基礎(chǔ)題.2、C【解析】結(jié)合題中所給函數(shù)的解析式可得:直線為的一條對稱軸,∴,∴,又,∴當k=1時,.本題選擇C選項.3、B【解析】根據(jù)誘導公式將原式化簡為,分子分母同除以,即可求出結(jié)果.【詳解】因為,又,所以原式.故選B【點睛】本題主要考查誘導公式和同角三角函數(shù)基本關(guān)系,熟記公式即可,屬于基礎(chǔ)題型.4、D【解析】求得的解集,結(jié)合充分條件、必要條件的判定方法,即可求解.【詳解】由,可得或,所以“”是“或”成立的充分不必要條件,所以“”是“”必要不充分條件.故選:D.5、C【解析】求出從甲、乙、丙、丁4位女同學中隨機選出2位同學擔任護旗手的基本事件,甲被選中的基本事件,即可求出甲被選中的概率【詳解】解:從甲、乙、丙、丁4位同學中隨機選出2位擔任護旗手,共有種方法,甲被選中,共有3種方法,甲被選中的概率是故選:C【點睛】本題考查通過組合的應用求基本事件和古典概型求概率,考查學生的計算能力,比較基礎(chǔ)6、A【解析】主要考查二次函數(shù)模型的應用解:設(shè)隔墻長度為,則矩形另一邊長為=12-2,矩形面積為=(12-2)=,0<<6,所以=3時,矩形面積最大,故選A7、A【解析】根據(jù)給定條件依次計算并借助特殊角的三角函數(shù)值求解作答.【詳解】因函數(shù)滿足,且當時,,則,所以.故選:A8、D【解析】利用韋達定理結(jié)合對數(shù)的運算性質(zhì)可求得的值,再由可求得實數(shù)的取值范圍.【詳解】由題意,知,因為,所以.又有兩個實根、,所以,解得.故選:D.9、D【解析】與中間值1和2比較.【詳解】,,,所以故選:D.【點睛】本題考查冪與對數(shù)的大小比較,在比較對數(shù)和冪的大小時,能化為同底數(shù)的化為同底數(shù),再利用函數(shù)的單調(diào)性比較,否則可借助中間值比較,如0,1,2等等.10、C【解析】用點到直線距離公式求出圓心到直線的距離,進而利用垂徑定理求出弦長.【詳解】圓的圓心到直線距離,所以.故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】先求的的單調(diào)性和值域,然后代入中求得函數(shù)的值域.【詳解】由于為上的增函數(shù),而,,即,對,由于為增函數(shù),故,即函數(shù)的值域為,也即.【點睛】本小題主要考查函數(shù)的單調(diào)性,考查函數(shù)的值域的求法,考查復合函數(shù)值域的求法.屬于中檔題.12、【解析】將所給式子通分后進行三角變換可得結(jié)果【詳解】由題意得故答案為:【點睛】易錯點睛:本題考查三角恒等化簡,本題的關(guān)鍵是通分后用正弦的差角公式,在由化成時注意角的順序,這是容易出錯的地方,考查運算能力,屬于中檔題.13、【解析】因為是偶函數(shù),所以不等式,又因為在上單調(diào)遞減,所以,解得.考點:本小題主要考查抽象函數(shù)的奇偶性與單調(diào)性,考查絕對值不等式的解法,熟練基礎(chǔ)知識是關(guān)鍵.14、【解析】由,且,得到是第二象限角,由此能化簡【詳解】解:∵,且,∴是第二象限角,∴故答案為:15、【解析】分析:先根據(jù)函數(shù)周期將自變量轉(zhuǎn)化到已知區(qū)間,代入對應函數(shù)解析式求值,再代入對應函數(shù)解析式求結(jié)果.詳解:由得函數(shù)的周期為4,所以因此點睛:(1)求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)的形式時,應從內(nèi)到外依次求值.(2)求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應自變量的值,切記代入檢驗,看所求的自變量的值是否滿足相應段自變量的取值范圍.16、【解析】∵在x∈(0,+∞)上是減函數(shù),f(1)=0,∴0<3-x<1,解得2<x<3.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、見解析【解析】取的中點,連接、,則,進一步得到四邊形為平行四邊形,同理得到四邊形為平行四邊形,結(jié)合線面平行的判定即可得到結(jié)果.【詳解】證明:取的中點,連接、.因為、分別為、的中點,.四邊形為平行四邊形..、分別為、的中點,∴,∴四邊形為平行四邊形,∴,∴.∵平面,平面,平面又,平面平面.【點睛】本題主要考查面面平行的判定,屬于基礎(chǔ)題型.18、(1)2(2)【解析】取BC中點O,中點E,連結(jié)OE,OA,以O(shè)為原點,OD為x軸,OE為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角的正切值三棱錐的體積,由此能求出結(jié)果【詳解】取BC中點O,中點E,連結(jié)OE,OA,由正三棱柱的底面邊長為3,側(cè)棱,D是CB延長線上一點,且以O(shè)為原點,OD為x軸,OE為y軸,OA為z軸,建立空間直角坐標系,則3,,0,,0,,0,,所以0,,3,,其中平面ABD的法向量1,,設(shè)平面的法向量y,,則,取,得1,,設(shè)二面角的平面角為,則,則,則,所以二面角的正切值為2由(1)可得平面,所以是三棱錐的高,且,所以三棱錐的體積:【點睛】本題主要考查了二面角的求解,及空間幾何體的體積的計算,其中解答中根據(jù)幾何體的結(jié)構(gòu)特征,建立適當?shù)目臻g直角坐標系,利用向量的夾角公式求解二面角問題是求解空間角的常用方法,同時注意“等體積法”在求解三棱錐體積中的應用,著重考查了推理與運算能力,屬于中檔試題19、(1);(2)1950;(3)進入復賽市民的分數(shù)應當大于或等于77.14.【解析】(1)根據(jù)頻率之和為,結(jié)合頻率分布直方圖即可求得;(2)根據(jù)(1)中所求,求得成績在的頻率,根據(jù)頻數(shù)計算公式即可求得結(jié)果;(3)根據(jù)頻率分布直方圖中位數(shù)的求解,結(jié)合已知數(shù)據(jù),即可求得結(jié)果.【小問1詳解】依題意,,故.【小問2詳解】成績在[70,90)上的頻率為,所以,所求人數(shù)為3000×0.65=1950.【小問3詳解】依題意,本次初賽成績前1500名參加復賽,即求該組數(shù)據(jù)的中位數(shù),因為≈77.14所以,進入復賽市民的分數(shù)應當大于或等于77.14.20、(1);;(2)在其定義域為單調(diào)增函數(shù).【解析】(1)由,可得,再由,可求出的值,從而可得函數(shù)的解析式;(2)利用函數(shù)的單調(diào)性定義進行判斷即可【詳解】解:(1)由,得,,得;所以;(2)該函數(shù)的定義域為,令,所以,所以,因為,,所以,所以在其定義域為單調(diào)增函數(shù).21、(1);(2).【解析】(1)運用指數(shù)不等式的解法,可得的范圍,再由對數(shù)不等式的解法,可得解集;(2)由題意可得函數(shù)在遞減,可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論