版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省株洲市攸縣第四中學2025屆高一數(shù)學第一學期期末學業(yè)水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則下列判斷正確的是A.函數(shù)是奇函數(shù),且在R上是增函數(shù)B.函數(shù)偶函數(shù),且在R上是增函數(shù)C.函數(shù)是奇函數(shù),且在R上是減函數(shù)D.函數(shù)是偶函數(shù),且在R上是減函數(shù)2.將函數(shù)的圖象上各點的橫坐標縮短到原來的,縱坐標不變,得到函數(shù)的圖象,則函數(shù)在上的最大值和最小值分別為A. B.C. D.3.設全集為,集合,,則()A. B.C. D.4.命題“,”的否定是()A, B.,C., D.,5.某班有50名學生,編號從1到50,現(xiàn)在從中抽取5人進行體能測試,用系統(tǒng)抽樣確定所抽取的第一個樣本編號為3,則第四個樣本編號是A.13 B.23C.33 D.436.已知,若,則A.1 B.2C.3 D.47.長方體的一個頂點上的三條棱長分別為3、4、5,且它的8個頂點都在同一個球面上,則這個球的表面積是()A. B.C. D.都不對8.下列哪組中的兩個函數(shù)是同一函數(shù)()A與 B.與C.與 D.與9.已知函數(shù),則A.0 B.1C. D.210.某國近日開展了大規(guī)模COVID-19核酸檢測,并將數(shù)據(jù)整理如圖所示,其中集合S表示()A.無癥狀感染者 B.發(fā)病者C.未感染者 D.輕癥感染者二、填空題:本大題共6小題,每小題5分,共30分。11.將函數(shù)圖象上的所有點向右平行移動個單位長度,則所得圖象的函數(shù)解析式為___________.12.函數(shù)定義域為______.13.下列說法中,所有正確說法的序號是__________①終邊落在軸上角的集合是;②函數(shù)圖象一個對稱中心是;③函數(shù)在第一象限是增函數(shù);④為了得到函數(shù)的圖象,只需把函數(shù)的圖象向右平移個單位長度14.記為偶函數(shù),是正整數(shù),,對任意實數(shù),滿足中的元素不超過兩個,且存在實數(shù)使中含有兩個元素,則的值是__________15.已知冪函數(shù)的圖象經(jīng)過點,則___________.16.已知函數(shù)定義域為,若滿足①在內(nèi)是單調函數(shù);存在使在上的值域為,那么就稱為“半保值函數(shù)”,若函數(shù)且是“半保值函數(shù)”,則的取值范圍為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1,BD的中點(1)求證:EF∥平面ABD1;(2)AA1=,求異面直線EF與BC所成角的正弦值18.如圖所示,是圓柱的母線,是圓柱底面圓的直徑,是底面圓周上異于的任意一點,.(1)求證:;(2)求三棱錐體積的最大值,并寫出此時三棱錐外接球的表面積.19.一個半徑為2米的水輪如圖所示,其圓心O距離水面1米,已知水輪按逆時針勻速轉動,每4秒轉一圈,如果當水輪上點P從水中浮現(xiàn)時(圖中點)開始計算時間.(1)以過點O且與水面垂直的直線為y軸,過點O且平行于水輪所在平面與水面的交線的直線為x軸,建立如圖所示的直角坐標系,試將點P距離水面的高度h(單位:米)表示為時間t(單位:秒)的函數(shù);(2)在水輪轉動的任意一圈內(nèi),有多長時間點P距水面的高度超過2米?20.設函數(shù)為常數(shù),且的部分圖象如圖所示.(1)求函數(shù)的表達式;(2)求函數(shù)的單調減區(qū)間;(3)若,求的值.21.已知函數(shù)(1)求的值及的單調遞增區(qū)間;(2)求在區(qū)間上的最大值和最小值,以及取最值時x的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】求出的定義域,判斷的奇偶性和單調性,進而可得解.【詳解】的定義域為R,且;∴是奇函數(shù);又和都是R上的增函數(shù);是R上的增函數(shù)故選A【點睛】本題考查奇偶性的判斷,考查了指數(shù)函數(shù)的單調性,屬于基礎題2、A【解析】先化簡f(x),再結合函數(shù)圖象的伸縮變換,得到函數(shù)y=g(x)的解析式,進而根據(jù)正弦型函數(shù)最值的求法,求出函數(shù)的最大值與最小值【詳解】∵函數(shù),∴g(x)∵x∈∴4x∈∴當4x時,g(x)取最大值1;當4x時,g(x)取最小值故選A.3、B【解析】先求出集合B的補集,再根據(jù)集合的交集運算求得答案.【詳解】因為,所以,故,故選:B.4、D【解析】利用全稱量詞命題的否定變換形式即可求解.【詳解】的否定是,的否定是,故“,”的否定是“,”,故選:D5、C【解析】根據(jù)系統(tǒng)抽樣的定義,求出抽取間隔,即可得到結論.【詳解】由題意,名抽取名學生,則抽取間隔為,則抽取編號為,則第四組抽取的學生編號為.故選:【點睛】本題考查系統(tǒng)抽樣,等間距抽取,屬于簡單題.6、A【解析】構造函數(shù),則為奇函數(shù),根據(jù)可求得,進而可得到【詳解】令,則為奇函數(shù),且,由題意得,∴,∴,∴.故選A【點睛】本題考查運用奇函數(shù)的性質求函數(shù)值,解題的關鍵是根據(jù)題意構造函數(shù),體現(xiàn)了轉化思想在解題中的應用,同時也考查觀察、構造的能力,屬于基礎題7、B【解析】由題意長方體的外接球的直徑就是長方體的對角線,求出長方體的對角線,就是求出球的直徑,然后求出球的表面積【詳解】解:長方體的一個頂點上的三條棱長分別是3,4,5,且它的8個頂點都在同一個球面上,所以長方體的對角線就是球的直徑,長方體的對角線為:,所以球的半徑為:;則這個球的表面積是:故選:8、D【解析】根據(jù)同一函數(shù)的概念,逐項判斷,即可得出結果.【詳解】A選項,的定義域為,的定義域為,定義域不同,故A錯;B選項,定義域為,的定義域為,定義域不同,故B錯;C選項,的定義域為,的定義域為,定義域不同,故C錯;D選項,與的定義域都為,且,對應關系一致,故D正確.故選:D.9、B【解析】,選B.10、A【解析】由即可判斷S的含義.【詳解】解:由圖可知,集合S是集合A與集合B的交集,所以集合S表示:感染未發(fā)病者,即無癥狀感染者,故選:A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由題意利用函數(shù)的圖象變換規(guī)律,即可得到結果【詳解】將函數(shù)的圖象向右平移個單位,所得圖象對應的函數(shù)解析式,即.故答案為:.12、【解析】解余弦不等式,即可得出其定義域.【詳解】由對數(shù)函數(shù)的定義知即,∴,∴函數(shù)的定義域為。故答案為:13、②④【解析】當時,,終邊不在軸上,①錯誤;因為,所以圖象的一個對稱中心是,②正確;函數(shù)的單調性相對區(qū)間而言,不能說在象限內(nèi)單調,③錯誤;函數(shù)的圖象向右平移個單位長度,得到的圖象,④正確.故填②④14、4、5、6【解析】根據(jù)偶函數(shù),是正整數(shù),推斷出的取值范圍,相鄰的兩個的距離是,依照題意列不等式組,求出的值【詳解】由題意得.∵為偶函數(shù),是正整數(shù),∴,∵對任意實數(shù),滿足中的元素不超過兩個,且存在實數(shù)使中含有兩個元素,∴中任意相鄰兩個元素的間隔必小于1,任意相鄰的三個元素的間隔之和必大于1∴,解得,又,∴.答案:【點睛】本題考查了正弦函數(shù)的奇偶性和周期性,以及根據(jù)集合的運算關系,求參數(shù)的值,關鍵是理解的意義,強調抽象思維與靈活應變的能力15、##【解析】根據(jù)題意得到,求出的值,進而代入數(shù)據(jù)即可求出結果.【詳解】由題意可知,即,所以,即,所以,因此,故答案為:.16、【解析】根據(jù)半保值函數(shù)的定義,將問題轉化為與的圖象有兩個不同的交點,即有兩個不同的根,換元后轉化為二次方程的實根的分布可解得.【詳解】因為函數(shù)且是“半保值函數(shù)”,且定義域為,由時,在上單調遞增,在單調遞增,可得為上的增函數(shù);同樣當時,仍為上的增函數(shù),在其定義域內(nèi)為增函數(shù),因為函數(shù)且是“半保值函數(shù)”,所以與的圖象有兩個不同的交點,所以有兩個不同的根,即有兩個不同的根,即有兩個不同的根,可令,,即有有兩個不同正數(shù)根,可得,且,解得.【點睛】本題考查函數(shù)的值域的求法,解題的關鍵是正確理解“半保值函數(shù)”,解題時要認真審題,仔細解答,注意合理地進行等價轉化三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明過程詳見解析(2)【解析】(1)先證明EF∥D1B,即證EF∥平面ABD1.(2)先證明∠D1BC是異面直線EF與BC所成的角(或所成角的補角),再解三角形求其正弦值.【詳解】(1)證明:連結BD1,在△DD1B中,E、F分別是D1D、DB的中點,∴EF是△DD1B的中位線,∴EF∥D1B,∵D1B?平面ABC1D1,EF平面ABD1,∴EF∥平面ABD1(2)∵AA1=,AB=2,EF∥BD1,∴∠D1BC是異面直線EF與BC所成的角(或所成角的補角),在直四棱柱ABCD-A1B1C1D1中,BC⊥平面CDD1C1,CD1?平面CDD1C1,∴BC⊥CD1.在Rt△D1C1C中,BC=2,CD1=,D1C⊥BC,∴sin∠D1BC=,【點睛】本題主要考查空間直線平面位置關系的證明和異面直線所成角的計算,意在考查學生對這些知識的掌握水平和分析推理能力.18、(1)見解析;(2).【解析】(1)由圓柱易知平面,所以,由圓的性質易得,進而可證平面;(2)由已知得三棱錐的高,當直角的面積最大時,三棱錐的體積最大,當點在弧中點時最大,此時外接球的直徑即可得解.試題解析:(1)證明:∵已知是圓柱的母線,.∴平面∵是圓柱底面圓的直徑,是底面圓周上異于的任意一點,∴,又,∴平面又平面(2)解:由已知得三棱錐的高,當直角的面積最大時,三棱錐的體積最大,當點在弧中點時最大,,結合(1)可得三棱錐的外接球的直徑即為,所以此時外接球的直徑..點睛:一般外接球需要求球心和半徑,首先應確定球心的位置,借助于外接球的性質,球心到各頂點距離相等,這樣可先確定幾何體中部分點組成的多邊形的外接圓的圓心,過圓心且垂直于多邊形所在平面的直線上任一點到多邊形的頂點的距離相等,然后同樣的方法找到另一個多邊形的各頂點距離相等的直線(這兩個多邊形需有公共點),這樣兩條直線的交點,就是其外接球的球心,再根據(jù)半徑,頂點到底面中心的距離,球心到底面中心的距離,構成勾股定理求解,有時也可利用補體法得到半徑,例:三條側棱兩兩垂直的三棱錐,可以補成長方體,它們是同一個外接球.19、(1);(2)秒【解析】(1)設,根據(jù)題意求得、的值,以及函數(shù)的最小正周期,可求得的值,根據(jù)的大小可得出的值,由此可得出關于的函數(shù)解析式;(2)由得出,令,求得的取值范圍,進而可解不等式,可得出的取值范圍,進而得解.【詳解】解:(1)如圖所示,標出點M與點N,設,根據(jù)題意可知,,所以,根據(jù)函數(shù)的物理意義可知:,又因為函數(shù)的最小正周期為,所以,所以可得:.(2)根據(jù)題意可知,,即,當水輪轉動一圈時,,可得:,所以此時,解得:,又因為(秒),即水輪轉動任意一圈內(nèi),有秒的時間點P距水面的高度超過2米20、(1)(2)(3)【解析】(1)由圖可以得到,,故,而的圖像過,故而,結合得到.(2)利用復合函數(shù)的單調性來求所給函數(shù)的單調減區(qū)間,可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年PAMXD6項目規(guī)劃申請報告
- 2024-2025學年五寨縣三上數(shù)學期末經(jīng)典模擬試題含解析
- 2025年投資與資產(chǎn)管理服務項目申請報告模范
- 財務經(jīng)理年度工作總結
- 關于公司活動策劃方案模板集錦8篇
- 高中生綜合素質自我評價15篇
- 弟子規(guī)讀書筆記10篇
- (2024年秋季版)七年級道德與法治上冊 2.2.2 文明交往我能行教學實錄 粵教版
- 朝花夕拾讀書筆記匯編15篇
- 2024年房地產(chǎn)項目合作合同
- 班主任工作規(guī)范與政策法規(guī)
- 信訪業(yè)務培訓班課件
- 物資清運方案及
- 熱穩(wěn)定校驗計算書
- 2023-2024學年四川省成都市高一上英語期末考試題(含答案和音頻)
- 北京市房山區(qū)2023-2024學年三年級上學期期末數(shù)學試卷
- 《中國建筑股份有限公司施工企業(yè)質量管理辦法》
- 在線開放課程申報書(成功申報)
- 醫(yī)師定考的個人述職報告
- JGT266-2011 泡沫混凝土標準規(guī)范
- 施工現(xiàn)場人員授權書-模板
評論
0/150
提交評論