版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省鹽城市阜寧中學2025屆高二數學第一學期期末質量檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在x軸與y軸上截距分別為,2的直線的傾斜角為()A.45° B.135°C.90° D.180°2.“”是“直線與圓相切”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.已知F是拋物線的焦點,直線l是拋物線的準線,則F到直線l的距離為()A.2 B.4C.6 D.84.已知數列滿足,,在()A.25 B.30C.32 D.645.已知橢圓與圓在第二象限的交點是點,是橢圓的左焦點,為坐標原點,到直線的距離是,則橢圓的離心率是()A. B.C. D.6.魏晉時期數學家劉徽首創(chuàng)割圓術,他在《九章算術》方田章圓田術中指出:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”這是注述中所用的割圓術是一種無限與有限的轉化過程,比如在正數中的“”代表無限次重復,設,則可以利用方程求得,類似地可得到正數()A.2 B.3C. D.7.設,為雙曲線的上,下兩個焦點,過的直線l交該雙曲線的下支于A,B兩點,且滿足,,則雙曲線的離心率為()A. B.C. D.8.拋物線的焦點是A. B.C. D.9.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.1610.在平面直角坐標系中,已知橢圓的上、下頂點分別為、,左頂點為,左焦點為,若直線與直線互相垂直,則橢圓的離心率為A. B.C. D.11.某制藥廠為了檢驗某種疫苗預防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設:“這種疫苗不能起到預防的作用”,利用列聯表計算得,經查對臨界值表知.則下列結論中,正確的結論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預防的有效率為C.在犯錯誤的概率不超過的前提下認為“這種疫苗能起到預防的作用”D.有的把握認為這種疫苗不能起到預防生病的作用12.下列雙曲線中,焦點在軸上且漸近線方程為的是A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.數列的前項和為,則該數列的通項公式___________14.已知三個數2,,6成等比數列,則實數______15.已知球面上的三點A,B,C滿足,,,球心到平面ABC的距離為,則球的表面積為______16.過點作斜率為的直線與橢圓相交于、兩個不同點,若是的中點,則該橢圓的離心率___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(1)當在處取得極值時,求函數的解析式;(2)當的極大值不小于時,求的取值范圍18.(12分)已知函數(m≥0).(1)當m=0時,求曲線在點(1,f(1))處的切線方程;(2)若函數的最小值為,求實數m的值.19.(12分)已知圓的圓心為,且經過點.(1)求圓的標準方程;(2)已知直線與圓相交于、兩點,求.20.(12分)已知正項數列的首項為,且滿足,(1)求證:數列為等比數列;(2)記,求數列的前n項和21.(12分)某廠有4臺大型機器,在一個月中,一臺機器至多出現1次故障,出現故障時需1名工人進行維修,且每臺機器是否出現故障是相互獨立的,每臺機器出現故障的概率為(1)若出現故障的機器臺數為X,求X的分布列;(2)已知一名工人每月只有維修1臺機器的能力,每月需支付給每位工人1萬元的工資,每臺機器不出現故障或出現故障時能及時維修,都產生5萬元的利潤,否則將不產生利潤.若該廠在雇傭維修工人時,要保證在任何時刻多臺機器同時出現故障能及時進行維修的概率不小于90%,雇傭幾名工人使該廠每月獲利最大?22.(10分)已知函數在處的切線與直線平行(1)求值,并求此切線方程;(2)證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】按照斜率公式計算斜率,即可求得傾斜角.【詳解】由題意直線過,設直線斜率為,傾斜角為,則,故.故選:A.2、A【解析】根據題意,結合直線與圓的位置關系求出,即可求解.【詳解】根據題意,由直線與圓相切,知圓心到直線的距離,解得或,因此“”是“直線與圓相切”的充分不必要條件.故選:A.3、B【解析】根據拋物線定義即可求解【詳解】由得,所以F到直線l的距離為故選:B4、A【解析】根據題中條件,得出數列公差,進而可求出結果.【詳解】由得,所以數列是以為公差的等差數列,又,所以.故選:A.【點睛】本題主要考查等差數列的基本量運算,屬于基礎題型.5、B【解析】連接,得到,作,求得,利用橢圓的定義,可求得,在直角中,利用勾股定理,整理的,即可求解橢圓的離心率.【詳解】如圖所示,連接,因為圓,可得,過點作,可得,且,由橢圓的定義,可得,所以,在直角中,可得,即,整理得,兩側同除,可得,解得或,又因為,所以橢圓的離心率為.故選:B【點睛】本題主要考查了橢圓的定義,直角三角形的勾股定理,以及橢圓的離心率的求解,其中解答中熟記橢圓的定義,結合直角三角形的勾股定理,列出關于的方程是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.6、A【解析】設,則,解方程可得結果.【詳解】設,則且,所以,所以,所以,所以或(舍).所以.故選:A【點睛】關鍵點點睛:設是解題關鍵.7、A【解析】設,表示出,由勾股定理列式計算得,然后在,再由勾股定理列式,計算離心率.【詳解】由題意得,,且,如圖所示,設,由雙曲線的定義可得,,因為,所以,得,所以,在中,,即.故選:A【點睛】雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍)8、D【解析】先判斷焦點的位置,再從標準型中找出即得焦點坐標.【詳解】焦點在軸上,又,故焦點坐標為,故選D.【點睛】求圓錐曲線的焦點坐標,首先要把圓錐曲線的方程整理為標準方程,從而得到焦點的位置和焦點的坐標.9、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當且僅當時取等.故選:B.10、C【解析】依題意,直線與直線互相垂直,,,故選11、C【解析】根據的值與臨界值的大小關系進行判斷.【詳解】∵,,∴在犯錯誤的概率不超過的前提下認為“這種疫苗能起到預防的作用”,C對,由已知數據不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯,由已知數據不能判斷這種疫苗預防的有效率為,B錯,由已知數據沒有的把握認為這種疫苗不能起到預防生病的作用,D錯,故選:C.12、C【解析】焦點在軸上的是C和D,漸近線方程為,故選C考點:1.雙曲線的標準方程;2.雙曲線的簡單幾何性質二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據與關系求解即可.【詳解】當時,,當時,,檢驗:,所以.故答案為:14、【解析】由題意可得,從而可求出的值【詳解】因為三個數2,,6成等比數列,所以,解得故答案為:15、【解析】由題意可知為直角三角形,求出外接圓的半徑,可求出球的半徑,然后求球的表面積.【詳解】由題意,,,,則,可知,所以外接圓的半徑為,因為球心到平面的距離為,所以球的半徑為:,所以球的表面積為:.故答案為:.16、【解析】利用點差法可求得的值,利用離心率公式的值.【詳解】設點、,則,由已知可得,由題意可得,將兩個等式相減得,所以,,因此,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)對函數求導,根據求出m,并驗證此時函數在x=1處取得極值,進而求得答案;(2)對函數求導,進而求出函數的單調區(qū)間和極大值,然后求出m的范圍.【小問1詳解】因為,所以.因為在處取得極值,所以,所以,此時,時,,單調遞減,時,,單調遞增,即在處取得極小值,故.【小問2詳解】,令,解得.時,,單調遞增,時,,單調遞減,時,,單調遞增.,即的取值范圍是.18、(1)(2)【解析】(1)求導,利用導函數的幾何意義求解切線方程的斜率,進而求出切線方程;(2)對導函數再次求導,判斷其單調性,結合隱零點求出其最小值,列出方程,求出實數m的值.【小問1詳解】當時,因為,所以切線的斜率為,所以切線方程為,即.【小問2詳解】因為,令,因為,所以在上單調遞增,當實數時,,;當實數時,,;當實數時,,所以總存在一個,使得,且當時,;當時,,所以,令,因為,所以單調遞減,又,所以時,所以,即.19、(1);(2).【解析】(1)求出圓的半徑長,結合圓心坐標可得出圓的標準方程;(2)求出圓心到直線的距離,利用勾股定理可求得.小問1詳解】解:圓的半徑為,因此,圓的標準方程為.【小問2詳解】解:圓心到直線的距離為,因此,.20、(1)證明見解析(2)【解析】(1)由遞推關系式化簡及等比數列的的定義證明即可;(2)根據裂項相消法求解即可得解.【小問1詳解】證明:由得,而且,則,即數列為首項,公比為的等比數列【小問2詳解】由上可知,所以,21、(1)答案見解析(2)雇傭3名【解析】(1)設出現故障的機器臺數為X,由題意知,即可由二項分布求解;(2)設該廠雇傭n名工人,n可取0、1、2、3、4,先求出保證在任何時刻多臺機器同時出現故障能及時進行維修的概率不小于90%需要至少3人,再分別計算3人,4人時的獲利即可得解.【小問1詳解】每臺機器運行是否出現故障看作一次實驗,在一次試驗中,機器出現故障的概率為,4臺機器相當于4次獨立試驗設出現故障的機器臺數為X,則,,,,,,則X的分布列為:X01234P【小問2詳解】設該廠雇傭n名工人,n可取0、1、2、3、4,設“在任何時刻多臺機器同時出現故障能及時進行維修”的概率為,則:n01234P1∵,∴至少要3名工人,才能保證在任何時刻多臺機器同時出現故障時能及時進行維修的概率不小于90%當該廠雇傭3名工人時,設該廠獲利為Y萬元,則Y的所有可能取值為17,12,,,∴Y的分布列為:Y1712P∴,∴該廠獲利的均值為16.9萬元當該廠雇傭4名工人時,4臺機器在任何時刻同時出現故障時能及時進行維修的概率為100%,該廠獲利的均值為萬元∴若該廠要保證在任何時刻多臺機器同時出現故障能及時進行維修的概率不小于90%時,雇傭3名工人使該廠每月獲利最大22、(1);;(2)證明見解析.【解析】(1)根據導數幾何意義可知,解方程求得,進而得到切線方程;(2)當時,由,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國衛(wèi)生消毒市場競爭格局展望及投資策略分析報告
- 2024年幼兒園管理權轉移協(xié)議3篇
- 梅河口康美職業(yè)技術學院《精細化學品化學及工藝》2023-2024學年第一學期期末試卷
- 眉山藥科職業(yè)學院《電工電子基礎A》2023-2024學年第一學期期末試卷
- 2024年度生產車間承包與綠色生產技術研發(fā)合同3篇
- 滿洲里俄語職業(yè)學院《涉老企業(yè)品牌管理》2023-2024學年第一學期期末試卷
- 茅臺學院《品牌敘事和聲譽管理》2023-2024學年第一學期期末試卷
- 漯河食品職業(yè)學院《設計室內》2023-2024學年第一學期期末試卷
- 2025城市規(guī)劃設計合同2
- 鋁扣板商場安裝合同
- 線束生產控制計劃CP實例
- 基于風險的軟件測試策略
- 大鎖孫天宇小品《時間都去哪了》臺詞劇本完整版-一年一度喜劇大賽
- 雙重血漿置換
- 2023北京海淀區(qū)高二上學期期末英語試題及答案
- 從分數到分式教學設計-
- 酒店長期租房合同模板(16篇)
- 場域與對話-公共空間里的雕塑 課件-2023-2024學年高中美術人美版(2019)美術鑒賞
- 關于違規(guī)收受禮品禮金警示教育心得體會范文
- 國家開放大學《國際商法》形考任務1-5參考答案
- 顱腦損傷課件
評論
0/150
提交評論