版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省竹溪一中、竹山一中等三校2025屆高二上數(shù)學期末復習檢測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為迎接第24屆冬季奧運會,某校安排甲、乙、丙、丁、戊共5名學生擔任冰球、冰壺和短道速滑三個項目的志愿者,每個比賽項目至少安排1人,每人只能安排到1個項目,則所有排法的總數(shù)為()A.60 B.120C.150 D.2402.七巧板是一種古老的中國傳統(tǒng)智力玩具,顧名思義,是由七塊板組成的.這七塊板可拼成許多圖形(1600種以上),如圖所示,某同學用七巧板拼成了一個“鴿子”形狀,若從“鴿子”身上任取一點,則取自“鴿子頭部”(圖中陰影部分)的概率是()A. B.C. D.3.如圖,已知四棱錐,底面ABCD是邊長為4的菱形,且,E為AD的中點,,則異面直線PC與BE所成角的余弦值為()A. B.C. D.4.橢圓的左、右焦點分別為、,上存在兩點、滿足,,則的離心率為()A. B.C. D.5.有7名同學參加百米競賽,預賽成績各不相同,取前3名參加決賽,小明同學已經(jīng)知道了自己的成績,為了判斷自己是否能進入決賽,他還需要知道7名同學成績的()A.平均數(shù) B.眾數(shù)C.中位數(shù) D.方差6.如圖,把橢圓的長軸分成6等份,過每個分點作x軸的垂線交橢圓的上半部分于點,F(xiàn)是橢圓C的右焦點,則()A.20 B.C.36 D.307.定義運算:.已知,都是銳角,且,,則()A. B.C. D.8.若直線a不平行于平面,則下列結論正確的是()A.內(nèi)的所有直線均與直線a異面 B.直線a與平面有公共點C.內(nèi)不存在與a平行的直線 D.內(nèi)的直線均與a相交9.已知、分別是橢圓的左、右焦點,A是橢圓上一動點,圓C與的延長線、的延長線以及線段相切,若為其中一個切點,則()A. B.C. D.與2的大小關系不確定10.我國古代數(shù)學典籍《四元玉鑒》中有如下一段話:“河有汛,預差夫一千八百八十人筑堤,只云初日差六十五人,次日轉多七人,今有三日連差三百人,問已差人幾天,差人幾何?”其大意為“官府陸續(xù)派遣1880人前往修筑堤壩,第一天派出65人,從第二天開始每天派出的人數(shù)比前一天多7人.已知最后三天一共派出了300人,則目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人11.已知命題:若直線的方向向量與平面的法向量垂直,則;命題:等軸雙曲線的離心率為,則下列命題是真命題的是()A. B.C. D.12.雙曲線的虛軸長為()A. B.C.3 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,則圓心的軌跡方程為______,若點,,則周長的最小值為______14.函數(shù)的導數(shù)_________________.15.某教師組織本班學生開展課外實地測量活動,如圖是要測山高.現(xiàn)選擇點A和另一座山頂點C作為測量觀測點,從A測得點M的仰角,點C的仰角,測得,,已知另一座山高米,則山高_______米.16.點P是棱長為1的正方體ABCD﹣A1B1C1D1的底面A1B1C1D1上一點,則的取值范圍是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形為矩形,,,為的中點,與交于點,平面.(1)若,求與所成角的余弦值;(2)若,求直線與平面所成角的正弦值.18.(12分)已知三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且(1)求角B;(2)若,角B的角平分線交AC于點D,,求CD的長19.(12分)已知函數(shù),,其中.(1)試討論函數(shù)的單調(diào)性;(2)若,證明:.20.(12分)已知拋物線的焦點為F,點在拋物線上,且在第一象限,的面積為(O為坐標原點).(1)求拋物線的標準方程;(2)經(jīng)過點的直線與交于,兩點,且,異于點,若直線與的斜率存在且不為零,證明:直線與的斜率之積為定值.21.(12分)已知數(shù)列的前項和,且(1)證明:數(shù)列為等差數(shù)列;(2)設,記數(shù)列的前項和為,若,對任意恒成立,求實數(shù)的取值范圍22.(10分)已知數(shù)列的前項的和為,且.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】結合排列組合的知識,分兩種情況求解.【詳解】當分組為1人,1人,3人時,有種,當分組為1人,2人,2人時有種,所以共有種排法.故選:C2、C【解析】設正方形邊長為1,求出七巧板中“4”這一塊的面積,然后計算概率【詳解】設正方形邊長為1,由正方形中七巧板形狀知“4”這一塊是正方形,邊長為,面積為,所以概率為故選:C3、B【解析】根據(jù)異面直線的定義找出角即為所求,再利用余弦定理解三角形即可得出.【詳解】分別取BC,PB的中點F,G,連接DF,F(xiàn)G,DG,如圖,因為E為AD的中點,四邊形ABCD是菱形,所以,所以(其補角)是異面直線PC與BE所成的角因為底面ABCD是邊長為4菱形,且,,由余弦定理可知,所以,所以,所以異面直線PC與BE所成角的余弦值為,故選:B4、A【解析】作點關于原點的對稱點,連接、、、,推導出、、三點共線,利用橢圓的定義可求得、、、,推導出,利用勾股定理可得出關于、的齊次等式,即可求得該橢圓的離心率.【詳解】作點關于原點的對稱點,連接、、、,則為、的中點,故四邊形為平行四邊形,故且,則,所以,,故、、三點共線,由橢圓定義,,有,所以,則,再由橢圓定義,有,因為,所以,在中,即,所以,離心率故選:A.5、C【解析】根據(jù)中位數(shù)的性質,結合題設按成績排序7選3,即可知還需明確的成績數(shù)據(jù)信息.【詳解】由題設,7名同學參加百米競賽,要取前3名參加決賽,則成績從高到低排列,確定7名同學成績的中位數(shù),即第3名的成績便可判斷自己是否能進入決賽.故選:C.6、D【解析】由橢圓的對稱性可知,,代入計算可得答案.【詳解】設橢圓左焦點為,連接由橢圓的對稱性可知,,所以.故選:D.7、B【解析】,只需求出與的正、余弦值即可,用平方關系時注意角的范圍.【詳解】解:因為,都是銳角,所以,,因為,所以,即,,所以,,因為,所有,故選:B.【點睛】信息給予題,已知三角函數(shù)值求三角函數(shù)值,考查根據(jù)三角函數(shù)的恒等變換求值,基礎題.8、B【解析】根據(jù)題意可得直線a與平面相交或在平面內(nèi),結合線面的位置關系依次判斷選項即可.【詳解】若直線a不平行與平面,則直線a與平面相交或在平面內(nèi).A:內(nèi)的所有直線均與直線a異面錯誤,也可能相交,故A錯誤;B:直線a與平面相交或直線a在平面內(nèi)都有公共點,故B正確;C:平面內(nèi)不存在與a平行的直線,錯誤,當直線a在平面內(nèi)就存在與a平行的直線,故C錯誤;D:平面內(nèi)的直線均與a相交,錯誤,也可能異面,故D錯誤.故選:B9、A【解析】由題意知,圓C是的旁切圓,點是圓C與軸的切點,設圓C與直線的延長線、分別相切于點、,由切線的性質可知:,,,結合橢圓的定義,即可得出結果.【詳解】由題意知,圓C是的旁切圓,點是圓C與軸的切點,設圓C與直線的延長線、分別相切于點、,則由切線的性質可知:,,,所以,所以,所以.故選A【點睛】本題主要考查圓與圓錐曲線的綜合,熟記橢圓的定義,以及切線的性質即可,屬于??碱}型.10、B【解析】根據(jù)題意,設每天派出的人數(shù)組成數(shù)列,可得數(shù)列是首項,公差數(shù)7的等差數(shù)列,解方程可得所求值【詳解】解:設第天派出的人數(shù)為,則是以65為首項、7為公差的等差數(shù)列,且,,∴,,∴天則目前派出的人數(shù)為人,故選:B11、D【解析】先判斷出p、q的真假,再分別判斷四個選項的真假.【詳解】因為“若直線的方向向量與平面的法向量垂直,則或”,所以p為假命題;對于等軸雙曲線,,所以離心率為,所以q為真命題.所以假命題,故A錯誤;為假命題,故B錯誤;為假命題,故C錯誤;為真命題,故D正確.故選:D12、D【解析】根據(jù)題意,由雙曲線的方程求出的值,即可得答案【詳解】因為,所以,所以雙曲線的虛軸長為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】設,圓半徑為,進而根據(jù)題意得,,進而得其軌跡方程為雙曲線,再根據(jù)雙曲線的定義,將周長轉化為求的最小值,進而求解.【詳解】解:如圖1,因為圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,所以,,所以中點,則,,所以,故設,圓半徑為,則,,,所以,即所以圓心的軌跡方程為,表示雙曲線,焦點為,,如圖2,連接,由雙曲線的定義得,即,所以周長為,因為,所以周長的最小值為故答案為:;.14、.【解析】根據(jù)初等函數(shù)的導數(shù)法則和導數(shù)的四則運算法則,準確運算,即可求解.【詳解】由題意,函數(shù),可得.故答案為:.15、【解析】利用正弦定理可求出各個三角形的邊長,進而求出山高.【詳解】解:在中,,,,可得在中,,所以由正弦定理可得:即,得在直角中,所以故答案為:.16、[﹣,0]【解析】建立空間直角坐標系,設出點P的坐標為(x,y,z),則由題意可得0≤x≤1,0≤y≤1,z=1,計算?x2﹣x,利用二次函數(shù)的性質求得它的值域即可【詳解】解:以點D為原點,以DA所在的直線為x軸,以DC所在的直線為y軸,以DD1所在的直線為z軸,建立空間直角坐標系,如圖所示;則點A(1,0,0),C1(0,1,1),設點P的坐標為(x,y,z),由題意可得0≤x≤1,0≤y≤1,z=1;∴(1﹣x,﹣y,﹣1),(﹣x,1﹣y,0),∴?x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y,由二次函數(shù)的性質可得,當x=y(tǒng)時,?取得最小值為;當x=0或1,且y=0或1時,?取得最大值為0,則?的取值范圍是[,0]故答案為:[,0]【點睛】本題主要考查了向量在幾何中的應用與向量的數(shù)量積運算問題,是綜合性題目三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以為原點,、所在的直線為、軸,以過點垂直于面的直線為軸,建立空間直角坐標系,利用空間向量法可求得與所成角的余弦值;(2)計算出平面的法向量,利用空間向量法可求得直線與平面所成角的正弦值.【小問1詳解】解:如圖,以為原點,、所在的直線為、軸,以過點垂直于面的直線為軸,建立空間直角坐標系,,,則,則,故,因為平面,平面,則,若,則,故、、、,則,,.因此,若,則與所成角的余弦值為.【小問2詳解】解:若,則、,,,,設平面的法向量為,則,取,可得,,所以直線與平面所成角的正弦值為.18、(1)(2)【解析】(1)根據(jù)正弦定理邊角互化得,進而得;(2)根據(jù)題意得,進而在中,由余弦定理即可得答案.【小問1詳解】解:因為,所以由正弦定理可得,所以,即,因為,所以,故,因為,所以【小問2詳解】解:由(1)可知,又;所以,,,所以,在,由余弦定理可得,即,解得19、(1)答案見解析(2)證明見解析【解析】(1)先求出函數(shù)的定義域,然后求導,再根據(jù)導數(shù)的正負求出函數(shù)的單調(diào)區(qū)間,(2)要證,只要證,由于時,,當時,令,再利用導數(shù)求出其最小值大于零即可【小問1詳解】的定義域為當時,,在上單調(diào)遞增;當時,令,解得;令,解得;綜上所述:當時,在上單調(diào)遞增,無減區(qū)間;當時,在上單調(diào)遞減,在上單調(diào)遞增;【小問2詳解】,,即證:,即證:當時,,,當時,令,則在上單調(diào)遞增在上單調(diào)遞增綜上所述:,即20、(1);(2)證明見解析.【解析】(1)由題可得,然后結合面積公式可得,即求;(2)通過分類討論,利用韋達定理法結合斜率公式計算即得.【小問1詳解】因為點拋物線上,所以,,,因為,故解得,拋物線方程為;【小問2詳解】當直線的斜率不存在時,直線為,得,.,,則.當直線的斜率存在時,設直線為,設,,聯(lián)立得:因為,所以,.所以,所以直線與的斜率之積為定值.21、(1)證明見解析(2)【解析】(1)利用可得答案;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電磁學電磁場》課件
- 《奧美品牌管理價值》課件
- 2024屆山西省大同市云州區(qū)高三上學期期末考試歷史試題(解析版)
- 單位管理制度集合大全人力資源管理十篇
- 單位管理制度集粹匯編【職員管理】十篇
- 單位管理制度匯編大合集【職員管理篇】
- 單位管理制度合并匯編【人力資源管理篇】
- 單位管理制度范例匯編人力資源管理篇
- 單位管理制度呈現(xiàn)匯編員工管理篇
- 單位管理制度呈現(xiàn)大全人力資源管理篇十篇
- 2024年保險考試-車險查勘定損員筆試歷年真題薈萃含答案
- 2024屆湖南省長沙市高三新高考適應性考試生物試題(含答案解析)
- 少數(shù)民族介紹水族
- 2024年四川省普通高中學業(yè)水平考試(思想政治樣題)
- 精液的常規(guī)檢測課件
- 《青紗帳-甘蔗林》 課件 2024年高教版(2023)中職語文基礎模塊下冊
- 碳纖維氣瓶制作流程介紹課件
- 2024信息安全意識培訓ppt課件完整版含內(nèi)容
- 沙金可行性開采方案
- 蘇州市2023-2024學年高二上學期期末考試英語試卷(含答案)
- 六年級上冊必讀書目《童年》閱讀測試題(附答案)
評論
0/150
提交評論