2025屆上海市豐華中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第1頁
2025屆上海市豐華中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第2頁
2025屆上海市豐華中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第3頁
2025屆上海市豐華中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第4頁
2025屆上海市豐華中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆上海市豐華中學(xué)數(shù)學(xué)高二上期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左焦點為F,O為坐標(biāo)原點,M,N兩點分別在C的左、右兩支上,若四邊形OFMN為菱形,則C的離心率為()A. B.C. D.2.函數(shù)的導(dǎo)函數(shù)為()A. B.C. D.3.若等差數(shù)列,其前n項和為,,,則()A.10 B.12C.14 D.164.已知隨機變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.765.在等差數(shù)列{an}中,a1=2,a5=3a3,則a3等于()A.-2 B.0C.3 D.66.過橢圓右焦點作x軸的垂線,并交C于A,B兩點,直線l過C的左焦點和上頂點.若以線段AB為直徑的圓與有2個公共點,則C的離心率e的取值范圍是()A. B.C. D.7.若雙曲線的一個焦點為,則的值為()A. B.C.1 D.8.已知雙曲線滿足,且與橢圓有公共焦點,則雙曲線的方程為()A. B.C. D.9.在等比數(shù)列中,若是函數(shù)的極值點,則的值是()A. B.C. D.10.已知直線交圓于A,B兩點,若點滿足,則直線l被圓C截得線段的長是()A.3 B.2C. D.411.已知等差數(shù)列的公差,記該數(shù)列的前項和為,則的最大值為()A.66 B.72C.132 D.19812.若,則下列不等式①;②;③;④中,正確的不等式有()A.0個 B.1個C.2個 D.3個二、填空題:本題共4小題,每小題5分,共20分。13.已知焦點在軸上的雙曲線,其漸近線方程為,焦距為,則該雙曲線的標(biāo)準(zhǔn)方程為________14.在空間直角坐標(biāo)系中,已知向量,則的值為__________.15.直線被圓所截得的弦的長為_____16.若函數(shù)在區(qū)間上單調(diào)遞減,則實數(shù)的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列的前項和滿足,.(1)求的通項公式;(2)求數(shù)列的前項和.18.(12分)已知等比數(shù)列的前項和為,且,.(1)求的通項公式;(2)求.19.(12分)如圖1是一張長方形鐵片,,,,分別是,中點,,分別在邊,上,且,將它卷成一個圓柱的側(cè)面圖2,使與重合,與重合.(1)求證:平面;(2)求幾何體的體積.20.(12分)已知橢圓,直線.(1)若直線與橢圓相切,求實數(shù)的值;(2)若直線與橢圓相交于A、兩點,為線段的中點,為坐標(biāo)原點,且,求實數(shù)的值.21.(12分)已知在等差數(shù)列中,,(1)求數(shù)列的通項公式;(2)若的前n項和為,且,,求數(shù)列的前n項和22.(10分)已知圓的方程為:.(1)求的值,使圓的周長最??;(2)過作直線,使與滿足(1)中條件的圓相切,求的方程,并求切線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題意可得且,從而求出點的坐標(biāo),將其代入雙曲線方程中,即可得出離心率.【詳解】由題意,四邊形為菱形,如圖,則且,分別為的左,右支上的點,設(shè)點在第二象限,在第一象限.由雙曲線的對稱性,可得,過點作軸交軸于點,則,所以,則,所以,所以,則,即,解得,或,由雙曲線的離心率,所以取,則故選:C2、B【解析】利用復(fù)合函數(shù)求導(dǎo)法則即可求導(dǎo).【詳解】,故選:B.3、B【解析】由等差數(shù)列前項和的性質(zhì)計算即可.【詳解】由等差數(shù)列前項和的性質(zhì)可得成等差數(shù)列,,即,得.故選:B.4、A【解析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【詳解】因隨機變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A5、A【解析】利用已知條件求得,由此求得.【詳解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故選:A.6、A【解析】求得以為直徑的圓的圓心和半徑,求得直線的方程,利用圓心到直線的距離小于半徑列不等式,化簡后求得橢圓離心率的取值范圍.【詳解】橢圓的左焦點,右焦點,上頂點,,所以為直徑的圓的圓心為,半徑為.直線的方程為,由于以線段為直徑的圓與相交,所以,,,,,所以橢圓的離心率的取值范圍是.故選:A7、B【解析】由題意可知雙曲線的焦點在軸,從而可得,再列方程可求得結(jié)果【詳解】因為雙曲線的一個焦點為,所以,,所以,解得,故選:B8、A【解析】根據(jù)橢圓的標(biāo)準(zhǔn)方程求出,利用雙曲線,結(jié)合建立方程求出,,即可求出雙曲線的漸近線方程【詳解】橢圓的標(biāo)準(zhǔn)方程為,橢圓中的,雙曲線的焦點與橢圓的焦點相同,雙曲線中,雙曲線滿足,即又在雙曲線中,即,解得:,所以雙曲線的方程為,故選:A【點睛】關(guān)鍵點點睛:本題主要考查雙曲線方程的求解,根據(jù)橢圓和雙曲線的關(guān)系建立方程求出,,是解決本題的關(guān)鍵,考查學(xué)生的計算能力,屬于基礎(chǔ)題9、B【解析】根據(jù)導(dǎo)數(shù)的性質(zhì)求出函數(shù)的極值點,再根據(jù)等比數(shù)列的性質(zhì)進行求解即可.【詳解】,當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,所以是函數(shù)的極值點,因為,且所以,故選:B10、B【解析】由題設(shè)知為圓的圓心且A、B在圓上,根據(jù)已知及向量數(shù)量積的定義求的大小,進而判斷△的形狀,即可得直線l被圓C截得線段的長.【詳解】∵點為圓的圓心且A、B在圓上,又,∴,∴,又,∴,故△為等邊三角形,∴直線l被圓C截得線段的長是2故選:B11、A【解析】根據(jù)等差數(shù)列的公差,求得其通項公式求解.【詳解】因為等差數(shù)列的公差,所以,則,所以,由,得,所以或12時,該數(shù)列的前項和取得最大值,最大值為,故選:A12、C【解析】由條件,可得,利用不等式的性質(zhì)和基本不等式可判斷①、②、③、④中不等式的正誤,得出答案.【詳解】因為,所以.因此,且,且②、③不正確.所以,所以①正確,由得、均為正數(shù),所以,(由條件,所以等號不成立),所以④正確.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)漸近線方程、焦距可得,,再根據(jù)雙曲線參數(shù)關(guān)系、焦點的位置寫出雙曲線標(biāo)準(zhǔn)方程.詳解】由題設(shè),可知:,,∴由,可得,,又焦點在軸上,∴雙曲線的標(biāo)準(zhǔn)方程為.故答案為:.14、【解析】由題知,進而根據(jù)向量數(shù)量積運算的坐標(biāo)表示求解即可.【詳解】解:因為向量,所以,所以故答案為:15、【解析】圓轉(zhuǎn)化為標(biāo)準(zhǔn)式方程,圓心到直線的距離為,圓的半徑為,因此所求弦長為考點:1.圓的方程;2.直線被圓截得的弦長的求法;16、【解析】求解定義域,由導(dǎo)函數(shù)小于0得到遞減區(qū)間,進而得到不等式組,求出實數(shù)的取值范圍.【詳解】顯然,且,由,以及考慮定義域x>0,解得:.在區(qū)間,上單調(diào)遞減,∴,解得:.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由,,可得求出,從而可得的通項公式;(2)由(1)可得,從而可得,然后利用裂項相消求和法可求得【詳解】解:(1)設(shè)等差數(shù)列的公差為,因為,.所以,化簡得,解得,所以,(2)由(1)可知,所以,所以【點睛】此題考查等差數(shù)列前項和的基本量計算,考查裂項相消求和法的應(yīng)用,考查計算能力,屬于基礎(chǔ)題18、(1)(2)【解析】(1)設(shè)的公比為,根據(jù)題意求得的值,即可求得的通項公式;(2)由(1)求得,得到,利用等比數(shù)列的求和公式,即可求解.【小問1詳解】解:設(shè)的公比為,因為,,則,又因為,解得,所以的通項公式為.【小問2詳解】解:由,可得,則,所以.19、(1)證明見解析.(2).【解析】(1)根據(jù)線面垂直的性質(zhì)和判定可得證;(2)作圓柱的母線,由平面幾何知識可得四邊形為平行四邊形,利用等體積法可求得,由幾何體的體積,可求得答案.【小問1詳解】證明:∵是直徑,∴,∵平面,平面,∴,∵平面,平面,,∴平面;【小問2詳解】如圖,作圓柱的母線,則,且,∴四邊形是平行四邊形,∴,且①又依題知,,,為底面圓的四等分點,∴,且②由①②知四邊形為平行四邊形,得,且,∴,∵到面的距離為,∴,所以幾何體的體積.20、(1)(2)m值為或.【解析】(1)利用判別式直接求解;(2)用“設(shè)而不求法”表示出,即可求出m.【小問1詳解】聯(lián)立,消去y可得.因為直線與橢圓相切,所以,解得:.【小問2詳解】設(shè).聯(lián)立,消去y可得.所以,,所以.又由,可得.所以.因為,所以,解得,所以實數(shù)m的值為或.21、(1);(2).【解析】(1)根據(jù)給定條件求出數(shù)列的公差即可求解作答.(2)由已知條件求出數(shù)列的通項,再利用錯位相減法計算作答.【小問1詳解】等差數(shù)列中,,解得,則公差,所以數(shù)列的通項公式為:.【小問2詳解】的前n項和為,,,則當(dāng)時,,于是得,即,而,即,,因此,數(shù)列是首項為2,公比為2的等比數(shù)列,,由(1)知,,則,因此,,,所以數(shù)列的前n項和.22、(1)(2)直線方程為或,切線段長度為4【解析】(1)先求圓的標(biāo)準(zhǔn)方程,由半徑最小則周長最小;(2)由,則圓的方程為:,直線和圓相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論