版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山東省普通高中2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,,,執(zhí)行如圖所示的程序框圖,輸出的值為()A. B.C. D.2.在數(shù)列中,,,,則()A.2 B.C. D.13.下列事件:①連續(xù)兩次拋擲同一個(gè)骰子,兩次都出現(xiàn)2點(diǎn);②某人買彩票中獎(jiǎng);③從集合中任取兩個(gè)不同元素,它們的和大于2;④在標(biāo)準(zhǔn)大氣壓下,水加熱到90℃時(shí)會(huì)沸騰.其中是隨機(jī)事件的個(gè)數(shù)是()A.1 B.2C.3 D.44.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.25.給出下列四個(gè)說法,其中正確的是A.命題“若,則”的否命題是“若,則”B.“”是“雙曲線的離心率大于”的充要條件C.命題“,”的否定是“,”D.命題“在中,若,則是銳角三角形”的逆否命題是假命題6.已知函數(shù),的導(dǎo)函數(shù),的圖象如圖所示,則的極值情況為()A.2個(gè)極大值,1個(gè)極小值 B.1個(gè)極大值,1個(gè)極小值C.1個(gè)極大值,2個(gè)極小值 D.1個(gè)極大值,無極小值7.在平行六面體ABCD﹣A1B1C1D1中,AC與BD的交點(diǎn)為M,設(shè)=,=,=,則=()A.++ B.+C.++ D.+8.如果橢圓上一點(diǎn)到焦點(diǎn)的距離等于6,則線段的中點(diǎn)到坐標(biāo)原點(diǎn)的距離等于()A.7 B.10C.12 D.149.下列雙曲線中,漸近線方程為的是A. B.C. D.10.在圓內(nèi),過點(diǎn)的最長弦和最短弦分別是AC和BD,則四邊形ABCD的面積為()A. B.C. D.11.古希臘數(shù)學(xué)家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知橢圓的面積為,、分別是的兩個(gè)焦點(diǎn),過的直線交于、兩點(diǎn),若的周長為,則的離心率為()A. B.C. D.12.函數(shù)的導(dǎo)函數(shù)為,對任意,都有成立,若,則滿足不等式的的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記為等差數(shù)列的前n項(xiàng)和.若,則__________14.過圓上一點(diǎn)的圓的切線的一般式方程為________15.已知直線與平行,則___________.16.雙曲線的漸近線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等差數(shù)列的前項(xiàng)和為(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和18.(12分)已知的展開式中二項(xiàng)式系數(shù)和為16(1)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)設(shè)展開式中的常數(shù)項(xiàng)為p,展開式中所有項(xiàng)系數(shù)的和為q,求19.(12分)設(shè)命題p:實(shí)數(shù)x滿足,其中;命題q:若,且為真,求實(shí)數(shù)x的取值范圍;若是的充分不必要條件,求實(shí)數(shù)m的取值范圍20.(12分)已知函數(shù)的兩個(gè)極值點(diǎn)之差的絕對值為.(1)求的值;(2)若過原點(diǎn)的直線與曲線在點(diǎn)處相切,求點(diǎn)的坐標(biāo).21.(12分)已知數(shù)列的前n項(xiàng)和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設(shè),數(shù)列的前n項(xiàng)和為,求證:.22.(10分)已知向量,,且.(1)求滿足上述條件的點(diǎn)M(x,y)的軌跡C的方程;(2)設(shè)曲線C與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)P,Q,點(diǎn)A(0,1),當(dāng)|AP|=|AQ|時(shí),求實(shí)數(shù)m的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】計(jì)算出、的值,執(zhí)行程序框圖中的程序,進(jìn)而可得出輸出結(jié)果.【詳解】,,則,執(zhí)行如圖所示的程序,,成立,則,不成立,輸出的值為.故選:B.2、A【解析】根據(jù)題中條件,逐項(xiàng)計(jì)算,即可得出結(jié)果.【詳解】因?yàn)?,,,所以,因?故選:A.3、B【解析】因?yàn)殡S機(jī)事件指的是在一定條件下,可能發(fā)生,也可能不發(fā)生的事件,只需逐一判斷4個(gè)事件哪一個(gè)符合這種情況即可【詳解】解:連續(xù)兩次拋擲同一個(gè)骰子,兩次都出現(xiàn)2點(diǎn)這一事件可能發(fā)生也可能不發(fā)生,①是隨機(jī)事件某人買彩票中獎(jiǎng)這一事件可能發(fā)生也可能不發(fā)生,②是隨機(jī)事件從集合,2,中任取兩個(gè)元素,它們的和必大于2,③是必然事件在標(biāo)準(zhǔn)大氣壓下,水加熱到時(shí)才會(huì)沸騰,④是不可能事件故隨機(jī)事件有2個(gè),故選:B4、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.5、D【解析】A選項(xiàng):否命題應(yīng)該對條件結(jié)論同時(shí)否定,說法不正確;B選項(xiàng):雙曲線的離心率大于,解得,所以說法不正確;C選項(xiàng):否定應(yīng)該是:,,所以說法不正確;D選項(xiàng):“在中,若,則是銳角三角形”是假命題,所以其逆否命題也為假命題,所以說法正確.【詳解】命題“若,則”的否命題是“若,則”,所以A選項(xiàng)不正確;雙曲線的離心率大于,即,解得,則“”是“雙曲線的離心率大于”的充分不必要條件,所以B選項(xiàng)不正確;命題“,”的否定是“,”,所以C選項(xiàng)不正確;命題“在中,若,則是銳角三角形”,在中,若,可能,此時(shí)三角形不是銳角三角形,所以這是一個(gè)假命題,所以其逆否命題也是假命題,所以該選項(xiàng)說法正確.故選:D【點(diǎn)睛】此題考查四個(gè)命題關(guān)系,充分條件與必要條件,含有一個(gè)量詞的命題的否定,關(guān)鍵在于弄清邏輯關(guān)系,正確求解.6、B【解析】根據(jù)圖象判斷的正負(fù),再根據(jù)極值的定義分析判斷即可【詳解】由,得,令,由圖可知的三個(gè)根即為與的交點(diǎn)的橫坐標(biāo),當(dāng)時(shí),,當(dāng)時(shí),,即,所以為的極大值點(diǎn),為的極大值,當(dāng)時(shí),,即,所以為的極小值點(diǎn),為的極小值,故選:B7、B【解析】利用向量三角形法則、平行四邊形法則、向量共線定理即可得出【詳解】如圖所示,∵=+,又=,=-,=,∴=+,故選:B8、A【解析】可由橢圓方程先求出,在利用橢圓的定義求出,利用已知求解出,再取的中點(diǎn),連接,利用中位線,即可求解出線段的中點(diǎn)到坐標(biāo)原點(diǎn)的距離.【詳解】因?yàn)闄E圓,,所以,結(jié)合得,,取的中點(diǎn),連接,所以為的中位線,所以.故選:A.9、A【解析】由雙曲線的漸進(jìn)線的公式可行選項(xiàng)A的漸進(jìn)線方程為,故選A.考點(diǎn):本題主要考查雙曲線的漸近線公式.10、D【解析】由題,求得圓的圓心和半徑,易知最長弦,最短弦為過點(diǎn)與垂直的弦,再求得BD的長,可得面積.【詳解】圓化簡為可得圓心為易知過點(diǎn)的最長弦為直徑,即而最短弦為過與垂直的弦,圓心到的距離:所以弦所以四邊形ABCD的面積:故選:D11、A【解析】本題首先可根據(jù)題意得出,然后根據(jù)的周長為得出,最后根據(jù)求出的值,即可求出的離心率.【詳解】因?yàn)闄E圓的面積為,所以長半軸長與短半軸長的乘積,因?yàn)榈闹荛L為,所以根據(jù)橢圓的定義易知,,,,則的離心率,故選:A.12、C【解析】構(gòu)造函數(shù),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,將所求不等式變形為,結(jié)合函數(shù)的單調(diào)性即可得解.【詳解】對任意,都有成立,即令,則,所以函數(shù)上單調(diào)遞增不等式即,即因?yàn)?,所以所以,,解得,所以不等式的解集為故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】因?yàn)槭堑炔顢?shù)列,根據(jù)已知條件,求出公差,根據(jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】是等差數(shù)列,且,設(shè)等差數(shù)列的公差根據(jù)等差數(shù)列通項(xiàng)公式:可得即:整理可得:解得:根據(jù)等差數(shù)列前項(xiàng)和公式:可得:.故答案:.【點(diǎn)睛】本題主要考查了求等差數(shù)列的前項(xiàng)和,解題關(guān)鍵是掌握等差數(shù)列的前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.14、【解析】求出過切線的半徑所在直線斜率,由垂直關(guān)系得切線斜率,然后得直線方程,現(xiàn)化為一般式【詳解】圓心為,,所以切線的斜率為,切線方程為,即故答案為:【點(diǎn)睛】本題考查求過圓上一點(diǎn)的圓的切線方程,利用切線性質(zhì)求得斜率后易得直線方程15、【解析】根據(jù)平行可得斜率相等列出關(guān)于參數(shù)的方程,解方程進(jìn)行檢驗(yàn)即可求解.【詳解】因?yàn)橹本€與平行,所以,解得或,又因?yàn)闀r(shí),,,所以直線,重合故舍去,而,,,所以兩直線平行.所以,故答案為:3.【點(diǎn)睛】(1)當(dāng)直線的方程中存在字母參數(shù)時(shí),不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況.同時(shí)還要注意x,y的系數(shù)不能同時(shí)為零這一隱含條件(2)在判斷兩直線平行、垂直時(shí),也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論16、【解析】將雙曲線化為標(biāo)準(zhǔn)方程后求解【詳解】,化簡得,其漸近線方程故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)等差數(shù)列前n項(xiàng)和求和公式求出首項(xiàng)和公差,進(jìn)而求出通項(xiàng)公式;(2)結(jié)合(1)求出,再令得出數(shù)列的正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而結(jié)合等差數(shù)列求和公式求得答案.【小問1詳解】設(shè)等差數(shù)列的首項(xiàng)和公差分別為和,∴,解得:所以.【小問2詳解】,所以.當(dāng);當(dāng),當(dāng),時(shí),,當(dāng)時(shí),.綜上:.18、(1)(2)【解析】(1)由二項(xiàng)式系數(shù)和的性質(zhì)得出,再由性質(zhì)求出展開式中二項(xiàng)式系數(shù)最大的項(xiàng);(2)由通項(xiàng)得出,利用賦值法得出,再求解【小問1詳解】由題意可得,解得.,展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為;【小問2詳解】,其展開式的通項(xiàng)為,令,得∴常數(shù)項(xiàng)令,可得展開式中所有項(xiàng)系數(shù)的和為,∴19、(1)(2)【解析】解二次不等式,其中解得,解得:,取再求交集即可;寫出命題所對應(yīng)的集合,命題p:,命題q:,由是的充分不必要條件,即p是q的充分不必要條件,則A是B的真子集,列不等式組可求解【詳解】解:(1)由,其中;解得,又,即,由得:,又為真,則,得:,故實(shí)數(shù)x的取值范圍為;由得:命題p:,命題q:,由是的充分不必要條件,即p是q的充分不必要條件,A是B的真子集,所以,即故實(shí)數(shù)m取值范圍為:.【點(diǎn)睛】本題考查了二次不等式的解法,復(fù)合命題的真假,命題與集合的關(guān)系,屬于簡單題20、(1);(2).【解析】(1)求,設(shè)的兩根分別為,,由韋達(dá)定理可得:,,由題意知,進(jìn)而可得的值;再檢驗(yàn)所求的的值是否符合題意即可;(2)設(shè),則,由列關(guān)于的方程,即可求得的值,進(jìn)而可得的值,即可得點(diǎn)的坐標(biāo).【詳解】由可得:設(shè)的兩根分別為,,則,,由題意可知:,即,所以解得:,當(dāng)時(shí),,由可得或,由可得,所以在單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,所以為極大值點(diǎn),為極小值點(diǎn),滿足兩個(gè)極值點(diǎn)之差的絕對值為,符合題意,所以.(2)由(1)知,,設(shè),則,由題意可得:,即,整理可得:,解得:或,因?yàn)榧礊樽鴺?biāo)原點(diǎn),不符合題意,所以,則,所以.21、(1)證明見解析;(2)證明見解析.【解析】(1)應(yīng)用的關(guān)系,結(jié)合構(gòu)造法可得,根據(jù)已知條件及等比數(shù)列的定義即可證結(jié)論.(2)由(1)得,再應(yīng)用錯(cuò)位相減法求,即可證結(jié)論.【小問1詳解】證明:對任意的,,,時(shí),,解得,時(shí),因?yàn)椋?,兩式相減可得:,即有,∴,又,則,因?yàn)?,,所以,對任意的,,所以,因此,是首?xiàng)和公比均為3的等比數(shù)列【小問2詳解】由(1)得:,則,,,兩式相減得:,化簡可得:,又,∴.22、(1)+y2=1;(2).【解析】(1)應(yīng)用向量垂直的坐標(biāo)表示得x2+3y2=3,即可寫出M的軌跡C的方程;(2)由直線與曲線C交于不同的兩點(diǎn)P(x1,y1),Q(x2,y2),設(shè)直線y=kx+m(k≠0),聯(lián)立方程整理所得方程有,且由根與系數(shù)關(guān)系用m,k表示x1+x2,x1x2,若N為PQ的中點(diǎn)結(jié)合|AP|=|AQ|知PQ⊥AN可得m、k的等量關(guān)系,結(jié)合即可求m的范圍.【詳解】(1)∵,即,∴,即有x2+3y2=3,即點(diǎn)M(x,y)的軌跡C的方程為+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲線C與直線y=kx+m(k≠0)相交于不同的兩點(diǎn),∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 云南財(cái)經(jīng)職業(yè)學(xué)院《工程項(xiàng)目管理與技術(shù)經(jīng)濟(jì)分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度高科技研發(fā)項(xiàng)目合作項(xiàng)目保密協(xié)議3篇
- 2025年度高新技術(shù)產(chǎn)業(yè)園區(qū)委托代理出租管理協(xié)議3篇
- 2025年度大型公共建筑施工勞務(wù)承包合同
- 2025年度二零二五年度農(nóng)村私人魚塘承包及生態(tài)養(yǎng)殖技術(shù)合作協(xié)議
- 2025年度城市土地糾紛調(diào)解協(xié)議書范文3篇
- 2025年北京勞動(dòng)合同電子合同管理服務(wù)外包合同
- 2025年度合伙農(nóng)業(yè)項(xiàng)目退出及土地流轉(zhuǎn)協(xié)議2篇
- 玉溪職業(yè)技術(shù)學(xué)院《矩陣論矩陣論》2023-2024學(xué)年第一學(xué)期期末試卷
- 玉柴職業(yè)技術(shù)學(xué)院《數(shù)據(jù)可視化設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 人才儲(chǔ)備營銷策略
- 幼兒園小班安全教育《危險(xiǎn)的東西不要碰》課件
- unit 3(單元測試)-2024-2025學(xué)年人教PEP版英語三年級上冊
- 2024年物業(yè)管理員理論知識考試題庫(含各題型)
- 期末檢測試卷(試題)-2024-2025學(xué)年四年級上冊數(shù)學(xué)青島版
- 2023-2024學(xué)年北京市海淀區(qū)八年級上學(xué)期期末考試物理試卷含詳解
- 備用金管理制度(規(guī)章制度)
- 病區(qū)持續(xù)質(zhì)量改進(jìn)計(jì)劃范文
- 四川省遂寧市城區(qū)遂寧市市城區(qū)初中2024年第一學(xué)期期末教學(xué)水平監(jiān)測七年級歷史試題(無答案)
- 2023年全國職業(yè)院校技能大賽賽項(xiàng)-ZZ019 智能財(cái)稅基本技能賽題 - 模塊二-答案
- 建筑垃圾清運(yùn)投標(biāo)方案(技術(shù)方案)
評論
0/150
提交評論