版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆吉林省白城市洮北區(qū)第一中學高三數(shù)學第一學期期末經典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),.若存在,使得成立,則的最大值為()A. B.C. D.2.如圖是甲、乙兩位同學在六次數(shù)學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等3.若的展開式中的系數(shù)之和為,則實數(shù)的值為()A. B. C. D.14.木匠師傅對一個圓錐形木件進行加工后得到一個三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.5.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數(shù)為()A. B. C. D.6.已知七人排成一排拍照,其中甲、乙、丙三人兩兩不相鄰,甲、丁兩人必須相鄰,則滿足要求的排隊方法數(shù)為().A.432 B.576 C.696 D.9607.如圖是函數(shù)在區(qū)間上的圖象,為了得到這個函數(shù)的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?,縱坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變8.已知復數(shù)滿足,則()A. B. C. D.9.“幻方”最早記載于我國公元前500年的春秋時期《大戴禮》中.“階幻方”是由前個正整數(shù)組成的—個階方陣,其各行各列及兩條對角線所含的個數(shù)之和(簡稱幻和)相等,例如“3階幻方”的幻和為15(如圖所示).則“5階幻方”的幻和為()A.75 B.65 C.55 D.4510.已知是虛數(shù)單位,若,,則實數(shù)()A.或 B.-1或1 C.1 D.11.設函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)12.在中,點D是線段BC上任意一點,,,則()A. B.-2 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.若實數(shù)x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數(shù)14.四邊形中,,,,,則的最小值是______.15.在四面體中,與都是邊長為2的等邊三角形,且平面平面,則該四面體外接球的體積為_______.16.已知橢圓的左右焦點分別為,過且斜率為的直線交橢圓于,若三角形的面積等于,則該橢圓的離心率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)直線與拋物線相交于,兩點,且,若,到軸距離的乘積為.(1)求的方程;(2)設點為拋物線的焦點,當面積最小時,求直線的方程.18.(12分)在平面直角坐標系中,曲線:(為參數(shù),),曲線:(為參數(shù)).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.19.(12分)已知橢圓:的左、右焦點分別為,,焦距為2,且經過點,斜率為的直線經過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.20.(12分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數(shù)a的取值范圍;(3)證明:對一切,都有成立.21.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.22.(10分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題意可知,,由可得出,,利用導數(shù)可得出函數(shù)在區(qū)間上單調遞增,函數(shù)在區(qū)間上單調遞增,進而可得出,由此可得出,可得出,構造函數(shù),利用導數(shù)求出函數(shù)在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數(shù)的定義域為,對恒成立,所以,函數(shù)在區(qū)間上單調遞增,同理可知,函數(shù)在區(qū)間上單調遞增,,則,,則,構造函數(shù),其中,則.當時,,此時函數(shù)單調遞增;當時,,此時函數(shù)單調遞減.所以,.故選:C.【點睛】本題考查代數(shù)式最值的計算,涉及指對同構思想的應用,考查化歸與轉化思想的應用,有一定的難度.2、B【解析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.3、B【解析】
由,進而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點睛】本題考查二項式定理的應用,考查學生的計算求解能力,屬于基礎題.4、C【解析】
由三視圖知幾何體是一個從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學生空間想象,數(shù)學運算能力,難度一般.5、C【解析】
畫出幾何體的圖形,然后轉化判斷四個命題的真假即可.【詳解】如圖;連接相關點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應用,涉及空間幾何體的體積,直線與平面的位置關系的應用,平面的基本性質,是中檔題.6、B【解析】
先把沒有要求的3人排好,再分如下兩種情況討論:1.甲、丁兩者一起,與乙、丙都不相鄰,2.甲、丁一起與乙、丙二者之一相鄰.【詳解】首先將除甲、乙、丙、丁外的其余3人排好,共有種不同排列方式,甲、丁排在一起共有種不同方式;若甲、丁一起與乙、丙都不相鄰,插入余下三人產生的空檔中,共有種不同方式;若甲、丁一起與乙、丙二者之一相鄰,插入余下三人產生的空檔中,共有種不同方式;根據(jù)分類加法、分步乘法原理,得滿足要求的排隊方法數(shù)為種.故選:B.【點睛】本題考查排列組合的綜合應用,在分類時,要注意不重不漏的原則,本題是一道中檔題.7、A【解析】
由函數(shù)的最大值求出,根據(jù)周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結合坐標變換關系,即可求出結論.【詳解】由圖可知,,又,,又,,,為了得到這個函數(shù)的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變?yōu)樵瓉淼模v坐標不變)即可.故選:A【點睛】本題考查函數(shù)的圖象求解析式,考查函數(shù)圖象間的變換關系,屬于中檔題.8、A【解析】
由復數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復數(shù)的運算.屬于簡單題.9、B【解析】
計算的和,然后除以,得到“5階幻方”的幻和.【詳解】依題意“5階幻方”的幻和為,故選B.【點睛】本小題主要考查合情推理與演繹推理,考查等差數(shù)列前項和公式,屬于基礎題.10、B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數(shù)的運算,屬于基礎題11、C【解析】
根據(jù)函數(shù)奇偶性的性質即可得到結論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關鍵.12、A【解析】
設,用表示出,求出的值即可得出答案.【詳解】設由,,.故選:A【點睛】本題考查了向量加法、減法以及數(shù)乘運算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、12【解析】
畫出約束條件的可行域,求出最優(yōu)解,即可求解目標函數(shù)的最大值.【詳解】根據(jù)約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數(shù)y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.【點睛】本題考查線性規(guī)劃的簡單應用,屬于基礎題.14、【解析】
在中利用正弦定理得出,進而可知,當時,取最小值,進而計算出結果.【詳解】,如圖,在中,由正弦定理可得,即,故當時,取到最小值為.故答案為:.【點睛】本題考查解三角形,同時也考查了常見的三角函數(shù)值,考查邏輯推理能力與計算能力,屬于中檔題.15、【解析】
先確定球心的位置,結合勾股定理可求球的半徑,進而可得球的面積.【詳解】取的外心為,設為球心,連接,則平面,取的中點,連接,,過做于點,易知四邊形為矩形,連接,,設,.連接,則,,三點共線,易知,所以,.在和中,,,即,,所以,,得.所以.【點睛】本題主要考查幾何體的外接球問題,外接球的半徑的求解一般有兩個思路:一是確定球心位置,利用勾股定理求解半徑;二是利用熟悉的模型求解半徑,比如長方體外接球半徑是其對角線的一半.16、【解析】
由題得直線的方程為,代入橢圓方程得:,設點,則有,由,且解出,進而求解出離心率.【詳解】由題知,直線的方程為,代入消得:,設點,則有,,而,又,解得:,所以離心率.故答案為:【點睛】本題主要考查了直線與橢圓的位置關系,三角形面積計算與離心率的求解,考查了學生的運算求解能力三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)設出兩點的坐標,由距離之積為16,可得.利用向量的數(shù)量積坐標運算,將轉化為.再利用兩點均在拋物線上,即可求得p的值,從而求出拋物線的方程;(2)設出直線l的方程,代入拋物線方程,由韋達定理發(fā)現(xiàn)直線l恒過定點,將面積用參數(shù)t表示,求出其最值,并得出此時的直線方程.【詳解】解:(1)由題設,因為,到軸的距離的積為,所以,又因為,,,所以拋物線的方程為.(2)因為直線與拋物線兩個公共點,所以的斜率不為,所以設聯(lián)立,得,即,,即直線恒過定點,所以,當時,面積取得最小值,此時.【點睛】本題考查了拋物線的標準方程的求法,直線與拋物線相交的問題,其中垂直條件的轉化,直線過定點均為該題的關鍵,屬于綜合性較強的題.18、(1);(2)【解析】
(1)消去參數(shù),將圓的參數(shù)方程,轉化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數(shù)方程以及輔助角公式,由此求得的面積的表達式,再由三角函數(shù)最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設,所以所以當時,面積最大值為【點睛】本小題主要考查參數(shù)方程轉化為普通方程,考查直角坐標方程轉化為極坐標方程,考查利用參數(shù)的方法求三角形面積的最值,屬于中檔題.19、(1)(2)存在;實數(shù)的取值范圍是【解析】
(1)根據(jù)橢圓定義計算,再根據(jù),,的關系計算即可得出橢圓方程;(2)設直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關系求出的中點坐標,求出的中垂線與軸的交點橫,得出關于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點,使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點.設直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關系可得,設的中點為,,則,,線段的中垂線方程為:,令可得,即.,故,當且僅當即時取等號,,且.的取值范圍是,.【點睛】本題主要考查了橢圓的性質,考查直線與橢圓的位置關系,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1)(2)((3)見證明【解析】
(1)先求函數(shù)導數(shù),再求導函數(shù)零點,列表分析導函數(shù)符號變化規(guī)律確定函數(shù)單調性,最后根據(jù)函數(shù)單調性確定最小值取法;(2)先分離不等式,轉化為對應函數(shù)最值問題,利用導數(shù)求對應函數(shù)最值即得結果;(3)構造兩個函數(shù),再利用兩函數(shù)最值關系進行證明.【詳解】(1)當時,單調遞減,當時,單調遞增,所以函數(shù)f(x)的最小值為f()=;(2)因為所以問題等價于在上恒成立,記則,因為,令函數(shù)f(x)在(0,1)上單調遞減;函數(shù)f(x)在(1,+)上單調遞增;即,即實數(shù)a的取值范圍為(.(3)問題等價于證明由(1)知道,令函數(shù)在(0,1)上單調遞增;函數(shù)在(1,+)上單調遞減;所以{,因此,因為兩個等號不能同時取得,所以即對一切,都有成立.【點睛】對于求不等式成立時的參數(shù)范圍問題,在可能的情況下把參數(shù)分離出來,使不等式一端是含有參數(shù)的不等式,另一端是一個區(qū)間上具體的函數(shù),這樣就把問題轉化為一端是函數(shù),另一端是參數(shù)的不等式,便于問題的解決.但要注意分離參數(shù)法不是萬能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復雜,性質很難研究,就不要使用分離參數(shù)法.21、(1)存在;詳見解析(2)【解析】
(1)利用面面平行的性質定理可得,為上靠近點的三等分點,中點,證明平面平面即得;(2)過作交于,可得兩兩垂直,以分別為軸建立空間直角坐標系,求出長,寫出各點坐標,用向量法求二面角.【詳解】解:(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電器維修公司服務員工作總結
- 埃塞萊米項目安保方案
- 2025年全球及中國乘用車用液力變矩器行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國低速型立式加工中心(主軸轉速6000-15000rpm)行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國屋面高分子防水卷材行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國三箱式冷熱沖擊試驗箱行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025年全球及中國工業(yè)機器人減速馬達行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球智能體測儀行業(yè)調研及趨勢分析報告
- 2025年全球及中國1P高功率電芯行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 2025-2030全球NRV鋁合金微型蝸桿減速機行業(yè)調研及趨勢分析報告
- 海通食品集團楊梅汁產品市場營銷
- 圍術期下肢深靜脈血栓預防的術中護理
- DBJ51-T 151-2020 四川省海綿城市建設工程評價標準
- GB/T 12996-2012電動輪椅車
- 小象學院深度學習-第7講遞歸神經網絡
- 三方采購協(xié)議范本
- 國有金融企業(yè)年金管理辦法
- 傾聽是一種美德
- 《水上加油站安全與防污染技術要求》J
- 項目部組織機構框圖(共2頁)
- 機動車登記證書
評論
0/150
提交評論