版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省鹽城市大岡初中2025屆數(shù)學(xué)高二上期末達(dá)標(biāo)檢測(cè)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若數(shù)列滿足,,則數(shù)列的通項(xiàng)公式為()A. B.C. D.2.已知點(diǎn),分別在雙曲線的左右兩支上,且關(guān)于原點(diǎn)對(duì)稱,的左焦點(diǎn)為,直線與的左支相交于另一點(diǎn),若,且,則的離心率為()A B.C. D.3.已知條件:,條件:表示一個(gè)橢圓,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.?dāng)?shù)學(xué)家歌拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半.這條直線被后人稱為三角形的歐拉線.已知的三個(gè)頂點(diǎn)分別為,,,則的歐拉線方程是()A. B.C. D.5.若、且,則下列式子一定成立的是()A. B.C. D.6.已知數(shù)列是等差數(shù)列,下面的數(shù)列中必為等差數(shù)列的個(gè)數(shù)為()①②③A.0 B.1C.2 D.37.如圖,在長(zhǎng)方體中,,E,F(xiàn)分別為的中點(diǎn),則異面直線與所成角的余弦值為()A. B.C. D.8.已知命題p:?x>2,x2>2x,命題q:?x0∈R,ln(x02+1)<0,則下列命題是真命題的是()A.p∧ B.p∨C.p∧q D.p∨q9.在下列命題中正確的是()A.已知是空間三個(gè)向量,則空間任意一個(gè)向量總可以唯一表示為B.若所在的直線是異面直線,則不共面C.若三個(gè)向量?jī)蓛晒裁?,則共面D.已知A,B,C三點(diǎn)不共線,若,則A,B,C,D四點(diǎn)共面10.若方程表示圓,則實(shí)數(shù)的取值范圍為()A. B.C. D.11.已知圓C過(guò)點(diǎn),圓心在x軸上,則圓C的方程為()A. B.C. D.12.設(shè)雙曲線與冪函數(shù)的圖象相交于,且過(guò)雙曲線的左焦點(diǎn)的直線與函數(shù)的圖象相切于,則雙曲線的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列中,,公差,則_________14.命題,恒成立是假命題,則實(shí)數(shù)a取值范圍是________________15.等差數(shù)列前3項(xiàng)的和為30,前6項(xiàng)的和為100,則它的前9項(xiàng)的和為_(kāi)_____.16.已知點(diǎn)為橢圓上的動(dòng)點(diǎn),為圓的任意一條直徑,則的最大值是__________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線C:x2=2py的焦點(diǎn)為F,點(diǎn)N(t,1)在拋物線C上,且|NF|=.(1)求拋物線C的方程;(2)過(guò)點(diǎn)M(0,1)的直線l交拋物線C于不同的兩點(diǎn)A,B,設(shè)O為坐標(biāo)原點(diǎn),直線OA,OB的斜率分別為k1,k2,求證:k1k2為定值.18.(12分)已知圓的圓心在直線,且與直線相切于點(diǎn).(1)求圓的方程;(2)直線過(guò)點(diǎn)且與圓相交,所得弦長(zhǎng)為,求直線的方程.19.(12分)在中,角A,B,C所對(duì)的邊分別為a,b,c,且,,.(1)求角B;(2)求a,c的值及的面積.20.(12分)已知橢圓C:()的離心率為,并且經(jīng)過(guò)點(diǎn),(1)求橢圓C的方程;(2)設(shè)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)為橢圓C上任意一點(diǎn),直線的斜率分別為,,求證:為定值21.(12分)已知等差數(shù)列滿足,(1)求數(shù)列的通項(xiàng)公式及前10項(xiàng)和;(2)等比數(shù)列滿足,,求和:22.(10分)已知橢圓C:的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,△AF1F2的周長(zhǎng)為6,離心率等于.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)(4,0)的直線l交橢圓C于M、N兩點(diǎn),且OM⊥ON,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)等差數(shù)列的定義和通項(xiàng)公式直接得出結(jié)果.【詳解】因?yàn)椋詳?shù)列是等差數(shù)列,公差為1,所以.故選:B2、D【解析】根據(jù)雙曲線的定義及,,應(yīng)用勾股定理,可得關(guān)系,即可求解.【詳解】設(shè)雙曲線的右焦點(diǎn)為,連接,,,如圖:根據(jù)雙曲線的對(duì)稱性及可知,四邊形為矩形.設(shè)因?yàn)?,所以,又,所以?在和中,,①,②由②化簡(jiǎn)可得,③把③代入①可得:,所以,故選:D【點(diǎn)睛】本題主要考查了雙曲線的定義,雙曲線的簡(jiǎn)單幾何性質(zhì),勾股定理,屬于難題.3、B【解析】根據(jù)曲線方程,結(jié)合充分、必要性的定義判斷題設(shè)條件間的關(guān)系.【詳解】由,若,則表示一個(gè)圓,充分性不成立;而表示一個(gè)橢圓,則成立,必要性成立.所以是的必要不充分條件.故選:B4、B【解析】根據(jù)的三個(gè)頂點(diǎn)坐標(biāo),先求解出重心的坐標(biāo),然后再根據(jù)三個(gè)點(diǎn)坐標(biāo)求解任意兩條垂直平分線的方程,聯(lián)立方程,即可算出外心的坐標(biāo),最后根據(jù)重心和外心的坐標(biāo)使用點(diǎn)斜式寫(xiě)出直線方程.【詳解】由題意可得的重心為.因?yàn)?,,所以線段的垂直平分線的方程為.因?yàn)?,,所以直線的斜率,線段的中點(diǎn)坐標(biāo)為,則線段的垂直平分線的方程為.聯(lián)立,解得,則的外心坐標(biāo)為,故的歐拉線方程是,即故選:B.5、B【解析】構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷AB選項(xiàng);構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷CD選項(xiàng).【詳解】對(duì)于AB選項(xiàng),構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,因?yàn)?、且,則,即,A錯(cuò)B對(duì);對(duì)于CD選項(xiàng),構(gòu)造函數(shù),其中,則.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減,當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增,故函數(shù)在上不單調(diào),無(wú)法確定與的大小關(guān)系,故CD都錯(cuò).故選:B.6、C【解析】根據(jù)等差數(shù)列的定義判斷【詳解】設(shè)的公差為,則,是等差數(shù)列,,是常數(shù)列,也是等差數(shù)列,若,則不是等差數(shù)列,故選:C7、A【解析】利用平行線,將異面直線的夾角問(wèn)題轉(zhuǎn)化為共面直線的夾角問(wèn)題,再解三角形.【詳解】取BC中點(diǎn)H,BH中點(diǎn)I,連接AI、FI、,因?yàn)镋為中點(diǎn),在長(zhǎng)方體中,,所以四邊形是平行四邊形,所以所以,又因?yàn)镕為的中點(diǎn),所以,所以,則即為異面直線與所成角(或其補(bǔ)角).設(shè)AB=BC=4,則,則,,根據(jù)勾股定理:,,,所以是等腰三角形,所以.故B,C,D錯(cuò)誤.故選:A.8、B【解析】取x=4,得出命題p是假命題,由對(duì)數(shù)的運(yùn)算得出命題q是假命題,再判斷選項(xiàng).【詳解】命題p:?x>2,x2>2x,是假命題,例如取x=4,則42=24;命題q:?x0∈R,ln(x02+1)<0,是假命題,∵?x∈R,ln(x2+1)≥0.則下列命題是真命題的是.故選:B.9、D【解析】對(duì)于A,利用空間向量基本定理判斷,對(duì)于B,利用向量的定義判斷,對(duì)于C,舉例判斷,對(duì)于D,共面向量定理判斷【詳解】對(duì)于A,若三個(gè)向量共面,在平面,則空間中不在平面的向量不能用表示,所以A錯(cuò)誤,對(duì)于B,因?yàn)橄蛄渴亲杂上蛄?,是可以自由平移,所以?dāng)所在的直線是異面直線時(shí),有可能共面,所以B錯(cuò)誤,對(duì)于C,當(dāng)三個(gè)向量?jī)蓛晒裁鏁r(shí),如空間直角坐標(biāo)系中的3個(gè)基向量?jī)蓛晒裁妫@3個(gè)向量不共面,所以C錯(cuò)誤,對(duì)于D,因?yàn)锳,B,C三點(diǎn)不共線,,且,所以A,B,C,D四點(diǎn)共面,所以D正確,故選:D10、D【解析】將方程化為標(biāo)準(zhǔn)式即可.【詳解】方程化為標(biāo)準(zhǔn)式得,則.故選:D.11、C【解析】設(shè)出圓的標(biāo)準(zhǔn)方程,將已知點(diǎn)的坐標(biāo)代入,解方程組即可.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,將坐標(biāo)代入得:,解得,故圓的方程為,故選:C.12、B【解析】設(shè)直線方程為,聯(lián)立,利用判別式可得,進(jìn)而可求,再結(jié)合雙曲線的定義可求,即得.【詳解】可設(shè)直線方程為,聯(lián)立,得,由題意得,∴,,∴,即,由雙曲線定義得,.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】由等差數(shù)列通項(xiàng)公式直接可得.【詳解】.故答案為:1514、【解析】由命題為假命題可得命題為真命題,由此可求a范圍.【詳解】∵命題,恒成立是假命題,∴,,∴,,又函數(shù)在為減函數(shù),∴,∴,∴實(shí)數(shù)a的取值范圍是,故答案為:.15、210【解析】依題意,、、成等差數(shù)列,從而可求得答案【詳解】∵等差數(shù)列{an}的前3項(xiàng)和為30,前6項(xiàng)和為100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差數(shù)列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),熟練利用、、成等差數(shù)列是關(guān)鍵,屬于中檔題16、【解析】設(shè)點(diǎn),則且,計(jì)算得出,再利用二次函數(shù)的基本性質(zhì)即可求得的最大值.【詳解】解:圓的圓心為,半徑長(zhǎng)為,設(shè)點(diǎn),由點(diǎn)為橢圓上的動(dòng)點(diǎn),可得:且,由為圓的任意一條直徑可得:,,,,,當(dāng)時(shí),取得最大值,即.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)x2=2y;(2)證明見(jiàn)解析【解析】(1)利用拋物線的定義進(jìn)行求解即可;(2)設(shè)直線l的直線方程與拋物線方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關(guān)系、斜率公式進(jìn)行證明即可.【小問(wèn)1詳解】∵點(diǎn)N(t,1)在拋物線C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴拋物線C的方程為x2=2y;【小問(wèn)2詳解】依題意,設(shè)直線l:y=kx+1,A(x1,y1),B(x2,y2),聯(lián)立,得x2﹣2kx﹣2=0.則x1x2=﹣2,∴.故k1k2為定值.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用拋物線的定義是解題的關(guān)鍵.18、(1)(2)或【解析】(1)分析可知圓心在直線上,聯(lián)立兩直線方程,可得出圓心的坐標(biāo),計(jì)算出圓的半徑,即可得出圓的方程;(2)利用勾股定理求出圓心到直線的距離,然后對(duì)直線的斜率是否存在進(jìn)行分類(lèi)討論,設(shè)出直線的方程,利用點(diǎn)到直線的距離公式求出參數(shù),即可得出直線的方程.【小問(wèn)1詳解】解:過(guò)點(diǎn)且與直線垂直的直線的方程為,由題意可知,圓心即為直線與直線的交點(diǎn),聯(lián)立,解得,故圓的半徑為,因此,圓的方程為.【小問(wèn)2詳解】解:由勾股定理可知,圓心到直線的距離為.當(dāng)直線的斜率不存在時(shí),直線的方程為,圓心到直線的距離為,滿足條件;當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,即,由題意可得,解得,此時(shí),直線的方程為,即.綜上所述,直線的方程為或.19、(1)(2),,【解析】(1)利用正弦定理化簡(jiǎn)已知條件,求得,進(jìn)而求得.(2)利用余弦定理求得和,由此求得三角形的面積.【小問(wèn)1詳解】由于,∴.又∵,∴.∴.【小問(wèn)2詳解】∵,且,,,∴,解得或(舍).∴,.∴.20、(1)(2)證明見(jiàn)解析【解析】(1)根據(jù)題意可列出關(guān)于的三個(gè)方程,解出即可得到橢圓C的方程;(2)根據(jù)對(duì)稱可得點(diǎn)坐標(biāo),再根據(jù)斜率公式可得,然后由點(diǎn)為橢圓C上的點(diǎn)得,代入化簡(jiǎn)即可求出為定值【小問(wèn)1詳解】由題意解得,.所以橢圓C的方程為.【小問(wèn)2詳解】因?yàn)辄c(diǎn)關(guān)于坐標(biāo)原點(diǎn)的對(duì)稱點(diǎn)為,所以的坐標(biāo)為.,,所以,又因?yàn)辄c(diǎn)為橢圓C上的點(diǎn),所以.21、(1),175(2)【解析】(1)由已知結(jié)合等差數(shù)列的通項(xiàng)公式先求出公差,然后結(jié)合通項(xiàng)公式及求和公式即可求解;(2)結(jié)合等比數(shù)列的性質(zhì)先求出,然后結(jié)合等比數(shù)列性質(zhì)及求和公式可求【小問(wèn)1詳解】解:等差數(shù)列滿足,,所以,,;【小問(wèn)2詳解】解:因?yàn)榈缺葦?shù)列滿足,,所以或(舍去),由等比數(shù)列的性質(zhì)可知,是以1為首項(xiàng),4為公比的等比數(shù)列,所以,所以22、(1);(2)或.【解析】(1)由條件得,再結(jié)合,可求得橢圓方程;(2)由題意設(shè)直線l:x=my+4,設(shè)M(x1,y1),N(x2,y2),直線方程與橢圓方程聯(lián)立方程組,消去,整理后利用根與系的關(guān)系可得,,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版?zhèn)€人房產(chǎn)銷(xiāo)售協(xié)議版B版
- 2024年版權(quán)質(zhì)押合同:文學(xué)作品版權(quán)質(zhì)押融資詳細(xì)規(guī)定
- 2023-2028年中國(guó)IP視訊行業(yè)市場(chǎng)深度分析及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 2025年中國(guó)風(fēng)熱感冒顆粒行業(yè)市場(chǎng)調(diào)查研究及投資前景預(yù)測(cè)報(bào)告
- 天饋線分析儀行業(yè)市場(chǎng)發(fā)展及發(fā)展趨勢(shì)與投資戰(zhàn)略研究報(bào)告
- 2021檔案員自我鑒定范文
- 島上書(shū)店讀后感15篇
- 自我介紹三年級(jí)作文300字集合九篇
- 高三年度工作計(jì)劃
- 同學(xué)邀請(qǐng)函合集6篇
- 2024年01月22332高等數(shù)學(xué)基礎(chǔ)期末試題答案
- 期末素養(yǎng)測(cè)評(píng)卷(試題)-2024-2025學(xué)年三年級(jí)上冊(cè)數(shù)學(xué)人教版
- 印章交接表(可編輯)
- 體育場(chǎng)館運(yùn)營(yíng)合同
- 5-項(xiàng)目五 跨境電商出口物流清關(guān)
- 棟號(hào)長(zhǎng)年度述職報(bào)告
- 無(wú)人機(jī)安全飛行承諾書(shū)
- 四川省成都市九縣區(qū)2023-2024學(xué)年高一下學(xué)期期末調(diào)研考試化學(xué)試題(解析版)
- 《網(wǎng)頁(yè)設(shè)計(jì)與制作案例實(shí)戰(zhàn)教程》全套教學(xué)課件
- 產(chǎn)品創(chuàng)意設(shè)計(jì)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 協(xié)議書(shū)范文離婚書(shū)范本模板
評(píng)論
0/150
提交評(píng)論