2025屆寧夏銀川二十四中數(shù)學高二上期末復習檢測試題含解析_第1頁
2025屆寧夏銀川二十四中數(shù)學高二上期末復習檢測試題含解析_第2頁
2025屆寧夏銀川二十四中數(shù)學高二上期末復習檢測試題含解析_第3頁
2025屆寧夏銀川二十四中數(shù)學高二上期末復習檢測試題含解析_第4頁
2025屆寧夏銀川二十四中數(shù)學高二上期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆寧夏銀川二十四中數(shù)學高二上期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為了了解某地區(qū)的名學生的數(shù)學成績,打算從中抽取一個容量為的樣本,現(xiàn)用系統(tǒng)抽樣的方法,需從總體中剔除個個體,在整個過程中,每個個體被剔除的概率和每個個體被抽取的概率分別為()A. B.C. D.2.函數(shù),的最小值為()A.2 B.3C. D.3.圓心為的圓,在直線x﹣y﹣1=0上截得的弦長為,那么,這個圓的方程為()A. B.C. D.4.若動點在方程所表示的曲線上,則以下結論正確的是()①曲線關于原點成中心對稱圖形;②動點到坐標原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④5.某汽車制造廠分別從A,B兩類輪胎中各隨機抽取了6個進行測試,下面列出了每一個輪胎行駛的最遠里程(單位:)A類輪胎:94,96,99,99,105,107B類輪胎:95,95,98,99,104,109根據(jù)以上數(shù)據(jù),下列說法正確的是()A.A類輪胎行駛的最遠里程的眾數(shù)小于B類輪胎行駛的最遠里程的眾數(shù)B.A類輪胎行駛的最遠里程的極差等于B類輪胎行駛的最遠里程的極差C.A類輪胎行駛的最遠里程的平均數(shù)大于B類輪胎行駛的最遠里程的平均數(shù)D.A類輪胎的性能更加穩(wěn)定6.若橢圓上一點到C的兩個焦點的距離之和為,則()A.1 B.3C.6 D.1或37.過點且斜率為的直線方程為()A. B.C. D.8.已知向量為平面的法向量,點在內,點在外,則點到平面的距離為()A. B.C. D.9.已知等差數(shù)列的前項和為,且,,則()A.3 B.5C.6 D.1010.在中,a,b,c分別為角A,B,C的對邊,已知,,的面積為,則()A. B.C. D.11.已知橢圓的短軸長為8,且一個焦點是圓的圓心,則該橢圓的左頂點為()A B.C. D.12.在空間直角坐標系中,點關于軸的對稱點為點,則點到直線的距離為()A B.C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知直線與直線垂直,則實數(shù)的值為___________.14.兩條平行直線與的距離是__________15.雙曲線的焦點在圓上,圓O與雙曲線C的漸近線在第一、四象限分別交于P,Q兩點滿足(其中O是坐標原點),則的面積是_________16.已知,,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線和的交點為(1)若直線經(jīng)過點且與直線平行,求直線的方程;(2)若直線經(jīng)過點且與兩坐標軸圍成的三角形的面積為,求直線的方程18.(12分)求滿足下列條件的雙曲線的標準方程(1)焦點在x軸上,實軸長為4,實半軸長是虛半軸長的2倍;(2)焦點在y軸上,漸近線方程為,焦距長為19.(12分)已知拋物線的焦點為F,點在拋物線上,且在第一象限,的面積為(O為坐標原點).(1)求拋物線的標準方程;(2)經(jīng)過點的直線與交于,兩點,且,異于點,若直線與的斜率存在且不為零,證明:直線與的斜率之積為定值.20.(12分)已知橢圓點(1)若橢圓的左焦點為,上頂點為,求點到直線的距離;(2)若點是橢圓的弦的中點,求直線的方程21.(12分)已知拋物線,直線與交于兩點且(為坐標原點)(1)求拋物線的方程;(2)設,若直線的傾斜角互補,求的值22.(10分)已知p:,q:(1)若p是q的必要不充分條件,求實數(shù)m的范圍;(2)若是的必要不充分條件,求實數(shù)m的范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)每個個體被抽取的概率都是相等的、被剔除的概率也都是相等的,分別由剔除的個數(shù)和抽取的樣本容量除以總體個數(shù)即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法可知:每個個體被抽取的概率都是相等的,每個個體被剔除的概率也都是相等的,所以每個個體被剔除的概率為,每個個體被抽取的概率為,故選:D.2、B【解析】求導函數(shù),分析單調性即可求解最小值【詳解】由,得,當時,,單調遞減;當時,,單調遞增∴當時,取得最小值,且最小值為故選:B.3、A【解析】由垂徑定理,根據(jù)弦長的一半及圓心到直線的距離求出圓半徑,即可寫出圓的標準方程.【詳解】圓心到直線x﹣y﹣1=0的距離弦長,設圓半徑為r,則故r=2則圓的標準方程為故選:A【點睛】本題主要考查直線與圓的位置關系和圓的標準方程,屬于基礎題.4、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關于原點成中心對稱圖形,故①正確;對于②,設,則動點到坐標原點的距離,因為,所以,故②正確;對于③,設,動點與點的距離為,因為函數(shù)在上遞減,所以當時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當時,因為,所以,故④不正確.綜上所述:結論正確的是:①②.故選:A5、D【解析】根據(jù)眾數(shù)、極差、平均數(shù)和方差的定義以及計算公式即可求解.【詳解】解:對A:A類輪胎行駛的最遠里程的眾數(shù)為99,B類輪胎行駛的最遠里程的眾數(shù)為95,選項A錯誤;對B:A類輪胎行駛的最遠里程的極差為13,B類輪胎行駛的最遠里程的極差為14,選項B錯誤對C:A類輪胎行駛的最遠里程的平均數(shù)為,B類輪胎行駛的最遠里程的平均數(shù)為,選項C錯誤對D:A類輪胎行駛的最遠里程的方差為,B類輪胎行駛的最遠里程的方差為,故A類輪胎的性能更加穩(wěn)定,選項D正確故選:D.6、B【解析】討論焦點的位置利用橢圓定義可得答案.【詳解】若,則由得(舍去);若,則由得故選:B.7、B【解析】利用點斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.8、A【解析】先求出向量,再利用空間向量中點到平面的距離公式即可求解.【詳解】解:由題知,點在內,點在外,所以又向量為平面的法向量所以點到平面的距離為:故選:A.9、B【解析】根據(jù)等差數(shù)列的性質,以及等差數(shù)列的前項和公式,由題中條件,即可得出結果.【詳解】因為數(shù)列為等差數(shù)列,由,可得,,則.故選:B.【點睛】本題主要考查等差數(shù)列的性質,以及等差數(shù)列前項和的基本量運算,屬于基礎題型.10、C【解析】利用面積公式,求出,進而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因為的面積為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C11、D【解析】根據(jù)橢圓的一個焦點是圓的圓心,求得c,再根據(jù)橢圓的短軸長為8求得b即可.【詳解】圓的圓心是,所以橢圓的一個焦點是,即c=3,又橢圓的短軸長為8,即b=4,所以橢圓長半軸長為,所以橢圓的左頂點為,故選:D12、C【解析】按照空間中點到直線的距離公式直接求解.【詳解】由題意,,,的方向向量,,則點到直線的距離為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由直線垂直的充要條件列式計算即可得答案.【詳解】解:因為直線與直線垂直,所以,解得故答案為:14、5【解析】根據(jù)兩平行直線,可求得a值,根據(jù)兩平行線間距離公式,即可得答案.【詳解】因為兩平行直線與,所以,解得,所以兩平行線的距離.故答案為:515、【解析】根據(jù)雙曲線的焦點在圓上可求出的值,設線段與軸的交點坐標為,進而根據(jù)求出的坐標,代入圓中,求出的值,即可求出結果.【詳解】因為雙曲線的焦點在圓上,所以,設線段與軸的交點坐標為,結合雙曲線與圓的對稱性可知為線段的中點,又因為,即,且,則,又因為直線的方程為,所以,又因為在圓上,所以,又因為,則,所以,從而,故,故答案為:.16、【解析】根據(jù)空間向量垂直得到等量關系,求出答案.【詳解】由題意得:,解得:故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)由已知可得交點坐標,再根據(jù)直線間的位置關系可得直線方程;(2)設直線方程,根據(jù)直線與兩坐標軸圍成的三角形的面積,列出方程組,解方程.【小問1詳解】解:聯(lián)立的方程,解得,即設直線的方程為:,將帶入可得所以的方程為:;【小問2詳解】解:法①:易知直線在兩坐標軸上的截距均不為,設直線方程為:,則直線與兩坐標軸交點為,由題意得,解得:或所以直線的方程為:或,即:或.法②:設直線的斜率為,則的方程為,當時,當時,所以,解得:或所以m的方程為或即:或.18、(1)(2)【解析】(1)(2)直接由條件解出即可得到雙曲線方程.【小問1詳解】由題意有,解得:,則雙曲線的標準方程為:【小問2詳解】由題意有,解得:,則雙曲線的標準方程為:19、(1);(2)證明見解析.【解析】(1)由題可得,然后結合面積公式可得,即求;(2)通過分類討論,利用韋達定理法結合斜率公式計算即得.【小問1詳解】因為點拋物線上,所以,,,因為,故解得,拋物線方程為;【小問2詳解】當直線的斜率不存在時,直線為,得,.,,則.當直線的斜率存在時,設直線為,設,,聯(lián)立得:因為,所以,.所以,所以直線與的斜率之積為定值.20、(1)(2)【解析】(1)根據(jù)橢圓基本關系求得,,再利用截距式求得方程,進而求得點到直線的距離.(2)設,利用點差法求解即可.【詳解】(1)橢圓的左焦點是,上頂點,方程為,即,點到直線的距離;(2)設,,,,又,,兩式相減得:,,即直線的斜率為,直線的方程為:,即【點睛】本題主要考查了橢圓中的基本量運算以及點差法的運用,屬于基礎題.21、(1);(2).【解析】(1)利用韋達定理法即求;(2)由題可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論