版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年河南省安陽市滑縣高三年級調研測試(數學試題)試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數且的圖象是()A. B.C. D.2.已知復數,則()A. B. C. D.23.若雙曲線:的一條漸近線方程為,則()A. B. C. D.4.已知函數,關于x的方程f(x)=a存在四個不同實數根,則實數a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)5.某三棱錐的三視圖如圖所示,那么該三棱錐的表面中直角三角形的個數為()A.1 B.2 C.3 D.06.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)7.已知函數.設,若對任意不相等的正數,,恒有,則實數a的取值范圍是()A. B.C. D.8.已知定義在上的函數滿足,且當時,,則方程的最小實根的值為()A. B. C. D.9.已知是虛數單位,若,,則實數()A.或 B.-1或1 C.1 D.10.若實數、滿足,則的最小值是()A. B. C. D.11.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.12.在直角中,,,,若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過拋物線C:()的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段的中點N且垂直于l的直線與C的準線交于點M,若,則l的斜率為______.14.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.15.函數的定義域為_____________.16.(5分)函數的定義域是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)若數列滿足:對于任意,均為數列中的項,則稱數列為“數列”.(1)若數列的前項和,,試判斷數列是否為“數列”?說明理由;(2)若公差為的等差數列為“數列”,求的取值范圍;(3)若數列為“數列”,,且對于任意,均有,求數列的通項公式.18.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內角,,所對的邊分別為,,,三邊,,與面積滿足關系式:,且,求的面積的值(或最大值).19.(12分)已知函數,其中,.(1)當時,求的值;(2)當的最小正周期為時,求在上的值域.20.(12分)如圖,點是以為直徑的圓上異于、的一點,直角梯形所在平面與圓所在平面垂直,且,.(1)證明:平面;(2)求點到平面的距離.21.(12分)已知數列是等差數列,前項和為,且,.(1)求.(2)設,求數列的前項和.22.(10分)如圖,在四棱錐中底面是菱形,,是邊長為的正三角形,,為線段的中點.求證:平面平面;是否存在滿足的點,使得?若存在,求出的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
先判斷函數的奇偶性,再取特殊值,利用零點存在性定理判斷函數零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數,關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【點睛】本題考查了函數圖象的判斷,考查了函數的性質,屬于中檔題.2.C【解析】
根據復數模的性質即可求解.【詳解】,,故選:C【點睛】本題主要考查了復數模的性質,屬于容易題.3.A【解析】
根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.4.D【解析】
原問題轉化為有四個不同的實根,換元處理令t,對g(t)進行零點個數討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當t<2時,g(t)=2ln(﹣t)(t)單調遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調遞增,在(2,+∞)上單調遞減.由,可得,即a<2.∴實數a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數零點問題,關鍵在于等價轉化,將問題轉化為通過導函數討論函數單調性解決問題.5.C【解析】
由三視圖還原原幾何體,借助于正方體可得三棱錐的表面中直角三角形的個數.【詳解】由三視圖還原原幾何體如圖,其中,,為直角三角形.∴該三棱錐的表面中直角三角形的個數為3.故選:C.【點睛】本小題主要考查由三視圖還原為原圖,屬于基礎題.6.C【解析】
根據并集的求法直接求出結果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎題.7.D【解析】
求解的導函數,研究其單調性,對任意不相等的正數,構造新函數,討論其單調性即可求解.【詳解】的定義域為,,當時,,故在單調遞減;不妨設,而,知在單調遞減,從而對任意、,恒有,即,,,令,則,原不等式等價于在單調遞減,即,從而,因為,所以實數a的取值范圍是故選:D.【點睛】此題考查含參函數研究單調性問題,根據參數范圍化簡后構造新函數轉換為含參恒成立問題,屬于一般性題目.8.C【解析】
先確定解析式求出的函數值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數與方程的根的最小值問題,涉及函數極大值、函數解析式的求法等知識,本題有一定的難度及高度,是一道有較好區(qū)分度的壓軸選這題.9.B【解析】
由題意得,,然后求解即可【詳解】∵,∴.又∵,∴,∴.【點睛】本題考查復數的運算,屬于基礎題10.D【解析】
根據約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯立,得,可得點,由得,平移直線,當該直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數形結合的解題思想方法,是基礎題.11.C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.12.C【解析】
在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點睛】本題考查向量的加減運算和數量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,根據拋物線定義和求得,從而求得直線l的傾斜角.【詳解】分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,由拋物線的定義知,,,因為,所以,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點睛】此題考查拋物線的定義,根據已知條件做出輔助線利用拋物線定義和幾何關系即可求解,屬于較易題目.14.【解析】
取的中點,設等邊三角形的中心為,連接.根據等邊三角形的性質可求得,,由等腰直角三角形的性質,得,根據面面垂直的性質得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點,設等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點睛】本題考查三棱錐的外接球的表面積,關鍵在于根據三棱錐的面的關系、棱的關系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.15.【解析】
由題意可得,,解不等式可求.【詳解】解:由題意可得,,解可得,,故答案為.【點睛】本題主要考查了函數的定義域的求解,屬于基礎題.16.【解析】
要使函數有意義,則,即,解得,故函數的定義域是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)不是,見解析(2)(3)【解析】
(1)利用遞推關系求出數列的通項公式,進一步驗證時,是否為數列中的項,即可得答案;(2)由題意得,再對公差進行分類討論,即可得答案;(3)由題意得數列為等差數列,設數列的公差為,再根據不等式得到公差的值,即可得答案;【詳解】(1)當時,又,所以.所以當時,,而,所以時,不是數列中的項,故數列不是為“數列”(2)因為數列是公差為的等差數列,所以.因為數列為“數列”所以任意,存在,使得,即有.①若,則只需,使得,從而得是數列中的項.②若,則.此時,當時,不為正整數,所以不符合題意.綜上,.(3)由題意,所以,又因為,且數列為“數列”,所以,即,所以數列為等差數列.設數列的公差為,則有,由,得,整理得,①.②若,取正整數,則當時,,與①式對應任意恒成立相矛盾,因此.同樣根據②式可得,所以.又,所以.經檢驗當時,①②兩式對應任意恒成立,所以數列的通項公式為.【點睛】本題考查數列新定義題、等差數列的通項公式,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度較大.18.見解析【解析】
若選擇①,結合三角形的面積公式,得,化簡得到,則,又,從而得到,將代入,得.又,∴,當且僅當時等號成立.∴,故的面積的最大值為,此時.若選擇②,,結合三角形的面積公式,得,化簡得到,則,又,從而得到,則,此時為等腰直角三角形,.若選擇③,,則結合三角形的面積公式,得,化簡得到,則,又,從而得到,則.19.(1)(2)【解析】
(1)根據,得到函數,然后,直接求解的值;(2)首先,化簡函數,然后,結合周期公式,得到,再結合,及正弦函數的性質解答即可.【詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當時,.當時,(最大值)當時,在是增函數,在是減函數.的值域是.【點睛】本題主要考查了簡單角的三角函數值的求解方法,兩角和與差的正弦、余弦公式,三角函數的圖象與性質等知識,考查了運算求解能力,屬于中檔題.20.(1)見解析;(2)【解析】
(1)取的中點,證明,則平面平面,則可證平面.(2)利用,是平面的高,容易求.,再求,則點到平面的距離可求.【詳解】解:(1)如圖:取的中點,連接、.在中,是的中點,是的中點,平面平面,故平面在直角梯形中,,且,∴四邊形是平行四邊形,,同理平面又,故平面平面,又平面平面.(2)是圓的直徑,點是圓上異于、的一點,又∵平面平面,平面平面平面,可得是三棱錐的高線.在直角梯形中,.設到平面的距離為,則,即由已知得,由余弦定理易知:,則解得,即點到平面的距離為故答案為:.【點睛】考查線面平行的判定和利用等體積法求距離的方法,是中檔題.21.(1)(2)【解析】
(1)由數列是等差數列,所以,解得,又由,解得,即可求得數列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數列的前n項和.【詳解】(1)由題意,數列是等差數列,所以,又,,由,得,所以,解得,所以數列的通項公式為.(2)由(1)得,,,兩式相減得,,即.【點睛】本題主要考查等差的通項公式、以及“錯位相減法”求和的應用,此類題目是數列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,易錯點是在“錯位”之后求和時,弄錯等比數列的項數,能較好的考
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物-山東省淄博市2024-2025學年第一學期高三期末摸底質量檢測試題和答案
- 《湖心島產品分析》課件
- 《種成本比較分析》課件
- 八年級上冊道德與法治第二課少年與夢知識總結
- 小學一年級20以內連加連減口算練習題1080道
- 《現代金融通論》課件
- 幼兒園周二食譜
- 高考新課標語文模擬試卷系列之76
- 《電子資源綜述》課件
- 西安市銷售員工作總結
- 小學數學一年級上冊-期末測試卷(二)含答案-人教版
- 登金陵鳳凰臺
- 小學四年級數學上冊促銷問題
- 初中體育-50米跑教學設計學情分析教材分析課后反思
- 國內外中學數學教學改革與發(fā)展
- 醫(yī)院藥品評價與遴選量化評分表
- 專業(yè)英語四級模擬試卷450(題后含答案及解析)
- 中等職業(yè)學校班主任能力比賽幼兒保育專業(yè)班級建設方案
- 50道《鄉(xiāng)土中國》期末專題訓練習題(多題型含解析)
- 滕王閣序帶拼音全文譯文
- 帶式輸送機檢修維護通用安全技術措施實用版
評論
0/150
提交評論