版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆河南省平頂山,許昌市,汝州市高二上數(shù)學(xué)期末復(fù)習(xí)檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列求導(dǎo)運(yùn)算正確的是()A. B.C. D.2.?dāng)?shù)學(xué)家歐拉1765年在其所著的《三角形幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知△ABC的頂點(diǎn)分別為,,,則△ABC的歐拉線方程為()A. B.C. D.3.如果直線與直線垂直,那么的值為()A. B.C. D.24.函數(shù)在上的極大值點(diǎn)為()A. B.C. D.5.已知直線和直線互相垂直,則等于()A.2 B.C.0 D.6.一輛汽車做直線運(yùn)動(dòng),位移與時(shí)間的關(guān)系為,若汽車在時(shí)的瞬時(shí)速度為12,則()A. B.C.2 D.37.已知橢圓=1的離心率為,則k的值為()A.4 B.C.4或 D.4或8.已知橢圓C:的左,右焦點(diǎn),過原點(diǎn)的直線l與橢圓C相交于M,N兩點(diǎn).其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.9.已知直線l和拋物線交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),且,交AB于點(diǎn)D,點(diǎn)D的坐標(biāo)為,則p的值為()A. B.1C. D.210.設(shè)F為雙曲線C:(a>0,b>0)的右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P、Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為A. B.C.2 D.11.已知是拋物線的焦點(diǎn),是拋物線的準(zhǔn)線,點(diǎn),連接交拋物線于點(diǎn),,則的面積為()A.4 B.9C. D.12.已知直線l,m,平面α,β,,,則是的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.直線與直線平行,則m的值是__________14.已知數(shù)列是遞增等比數(shù)列,,則數(shù)列的前項(xiàng)和等于.15.已知直線與直線平行,則直線,之間的距離為__________.16.若函數(shù),則在點(diǎn)處切線的斜率為______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列{an}滿足,(1)記,證明:數(shù)列{bn}為等比數(shù)列,并求數(shù)列{bn}的通項(xiàng)公式;(2)記數(shù)列{bn}前n項(xiàng)和為Tn,證明:18.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,點(diǎn)E在橢圓C上,且,,.(1)求橢圓C的方程:(2)直線l過點(diǎn),交橢圓于點(diǎn)A,B,且點(diǎn)P恰為線段AB的中點(diǎn),求直線l的方程.19.(12分)如圖,在梯形中,,四邊形為矩形,且平面,.(1)求證:;(2)點(diǎn)在線段(不含端點(diǎn))上運(yùn)動(dòng),設(shè)直線與平面所成角為,求的取值范圍.20.(12分)如圖,四棱錐中,,.(1)證明:平面;(2)在線段上是否存在一點(diǎn),使直線與平面所成角的正弦值等于?21.(12分)如圖,在四棱錐中,平面,,且,,,,,為的中點(diǎn)(1)求證:平面;(2)在線段上是否存在一點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出的值;若不存在,說明理由22.(10分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,的面積為1.(1)求拋物線的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)是拋物線上異于點(diǎn)的一點(diǎn),直線與直線交于點(diǎn),過作軸的垂線交拋物線于點(diǎn),求證:直線過定點(diǎn).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和求導(dǎo)法則判斷.【詳解】,,,,只有B正確.故選:B.【點(diǎn)睛】本題考查基本初等函數(shù)的導(dǎo)數(shù)公式,考查導(dǎo)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.2、A【解析】求出重心坐標(biāo),求出AB邊上高和AC邊上高所在直線方程,聯(lián)立兩直線可得垂心坐標(biāo),即可求出歐拉線方程.【詳解】由題可知,△ABC的重心為,可得直線AB的斜率為,則AB邊上高所在的直線斜率為,則方程為,直線AC的斜率為,則AC邊上高所在的直線斜率為2,則方程為,聯(lián)立方程可得△ABC的垂心為,則直線GH斜率為,則可得直線GH方程為,故△ABC的歐拉線方程為.故選:A.3、A【解析】根據(jù)兩條直線垂直列方程,化簡(jiǎn)求得的值.【詳解】由于直線與直線垂直,所以.故選:A4、C【解析】求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可求出函數(shù)的極大值點(diǎn)【詳解】,∴當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,∴函數(shù)在的極大值點(diǎn)為故選:C5、D【解析】利用直線垂直系數(shù)之間的關(guān)系即可得出.【詳解】解:直線和直線互相垂直,則,解得:.故選:D.6、D【解析】首先求出函數(shù)的導(dǎo)函數(shù),依題意可得,即可解得;【詳解】解:因?yàn)椋杂制囋跁r(shí)的瞬時(shí)速度為12,即即,解得故選:D【點(diǎn)睛】本題考查導(dǎo)數(shù)在物理中的應(yīng)用,屬于基礎(chǔ)題.7、C【解析】根據(jù)焦點(diǎn)所在坐標(biāo)軸進(jìn)行分類討論,由此求得的值.【詳解】當(dāng)焦點(diǎn)在軸上時(shí),,且.當(dāng)焦點(diǎn)在軸上時(shí),且.故選:C8、D【解析】由題設(shè)易知四邊形為矩形,可得,結(jié)合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對(duì)稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:由橢圓的對(duì)稱性及矩形性質(zhì)可得,由已知條件得到,進(jìn)而得到橢圓參數(shù)的齊次式求離心率范圍.9、B【解析】由垂直關(guān)系得出直線l方程,聯(lián)立直線和拋物線方程,利用韋達(dá)定理以及數(shù)量積公式得出p的值.【詳解】,,即聯(lián)立直線和拋物線方程得設(shè),則解得故選:B10、A【解析】準(zhǔn)確畫圖,由圖形對(duì)稱性得出P點(diǎn)坐標(biāo),代入圓的方程得到c與a關(guān)系,可求雙曲線的離心率【詳解】設(shè)與軸交于點(diǎn),由對(duì)稱性可知軸,又,為以為直徑的圓的半徑,為圓心,又點(diǎn)在圓上,,即,故選A【點(diǎn)睛】本題為圓錐曲線離心率的求解,難度適中,審題時(shí)注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運(yùn)算繁瑣,準(zhǔn)確率大大降低,雙曲線離心率問題是圓錐曲線中的重點(diǎn)問題,需強(qiáng)化練習(xí),才能在解決此類問題時(shí)事半功倍,信手拈來11、D【解析】根據(jù)題意求得拋物線的方程為和焦點(diǎn)為,由,得到為的中點(diǎn),得到,代入拋物線方程,求得,進(jìn)而求得的面積.【詳解】由直線是拋物線的準(zhǔn)線,可得,即,所以拋物線的方程為,其焦點(diǎn)為,因?yàn)椋傻每傻萌c(diǎn)共線,且為的中點(diǎn),又因?yàn)?,,所以,將點(diǎn)代入拋物線,可得,所以的面積為.故選:D.12、A【解析】由題意可知,已知,,則可以推出,反之不成立.【詳解】已知,,則可以推出,已知,,則不可以推出.故是的充分不必要條件.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用直線的平行條件即得.詳解】∵直線與直線平行,∴,∴.故答案為:.14、【解析】由題意,,解得或者,而數(shù)列是遞增的等比數(shù)列,所以,即,所以,因而數(shù)列的前項(xiàng)和,故答案為.考點(diǎn):1.等比數(shù)列的性質(zhì);2.等比數(shù)列的前項(xiàng)和公式.15、【解析】利用直線平行與斜率之間的關(guān)系、點(diǎn)到直線的距離公式即可得出【詳解】解:因?yàn)橹本€與直線平行,所以,解得,當(dāng)時(shí),,,則故答案為:【點(diǎn)睛】熟練運(yùn)用直線平行與斜率之間的關(guān)系、點(diǎn)到直線的距離公式,是解題關(guān)鍵16、【解析】根據(jù)條件求出,,再求即答案.【詳解】∵,∴,則和,得,,∴,,∴,所以在點(diǎn)處切線的斜率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;bn=2n(2)證明見解析【解析】(1)由遞推關(guān)系式轉(zhuǎn)化為等比數(shù)列即可求解;(2)由(1)求出,再用裂項(xiàng)相消法求和后就可以證明不等式.【小問1詳解】由an+1=2an+1可得所以{bn}是以首項(xiàng),公比為2的等比數(shù)列所以.【小問2詳解】易得于是所以因?yàn)?,所?18、(1)(2)【解析】(1)根據(jù)橢圓的定義可求出,由結(jié)合勾股定理可求出,最后根據(jù)的關(guān)系求出,即可求出橢圓方程;(2)分直線的斜率存在或不存在兩種情況討論,當(dāng)直線斜率存在時(shí),設(shè)出直線方程與橢圓聯(lián)立,利用中點(diǎn)的關(guān)系求出即可.【小問1詳解】∵點(diǎn)E在橢圓C上,∴,即.在中,,∴橢圓的半焦距.∵,∴橢圓的方程為.【小問2詳解】設(shè),,若直線的斜率不存在,顯然不符合題意.從而可設(shè)過點(diǎn)的直線的方程為,將直線的方程代入橢圓的方程,得,則.∵P為線段AB的中點(diǎn),∴,解得.故直線的方程為,即(經(jīng)檢驗(yàn),所求直線方程符合題意).19、(1)證明見解析(2)【解析】(1)過作,垂足為,利用正余弦定理可證,再利用線線垂足證明線面垂直,進(jìn)而可得證;(2)以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,利用坐標(biāo)法求線面夾角的正弦值.【小問1詳解】證明:由已知可得四邊形是等腰梯形,過作,垂足為,則,在中,,則,可得,在中,由余弦定理可得,,則,,又平面,平面,,,,平面,平面,又為矩形,,則平面,而平面,;【小問2詳解】平面,且,以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸建立空間直角坐標(biāo)系,則,,,,,設(shè),則,又,設(shè)平面的法向量為,由,取,得,又,,,,則.20、(1)詳解解析;(2)存在.【解析】(1)利用勾股定理證得,結(jié)合線面垂直的判定定理即可證得結(jié)論;(2)以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),,求得平面的法向量,利用已知條件建立關(guān)于的方程,進(jìn)而得解.【小問1詳解】取中點(diǎn)為,連接,在中,,,,又,,所以,又,,而,所以,又,,,又,,平面.【小問2詳解】以A為坐標(biāo)原點(diǎn),以為x軸,為y軸,為z軸建立空間直角坐標(biāo)系,則,,,,設(shè)點(diǎn),因?yàn)辄c(diǎn)F在線段上,設(shè),,,設(shè)平面的法向量為,,,則,令,則,設(shè)直線CF與平面所成角為,,解得或(舍去),,此時(shí)點(diǎn)F是的三等分點(diǎn),所以在線段上是存在一點(diǎn),使直線與平面所成角的正弦值等于.21、(1)證明見解析;(2)存在,.【解析】(1)建立空間直角坐標(biāo)系,求出平面的法向量和直線的單位向量,從而可證明線面平行.(2)令,,設(shè),求出,結(jié)合已知條件可列出關(guān)于的方程,從而可求出的值.【詳解】證明:過作于點(diǎn),則,以為原點(diǎn),,,所在的直線分別為,,軸建立如圖所示的空間直角坐標(biāo)系則,,,
,,,∵為的中點(diǎn).∴.則,,,設(shè)平面的法向量為,則令,則,,∴.∴,即,又平面.∴平面解:令,,設(shè),∴.∴,∴
.由知,平面的法向量為.∵直線與平面所成角的正弦值為,∴,化簡(jiǎn)得,即,∵,∴,故【點(diǎn)睛】本題考查了利用空間向量證明線面平行,考查了平面法向量的求解,屬于中檔題.22、(1)(2)證明見解析【解析】(1)由條件列方程求,由此可得拋物線方程;(2)方法一:聯(lián)立直線與拋物線方程,結(jié)合條件三點(diǎn)共線,可證明直線過定點(diǎn),方法二:聯(lián)立直線與拋物線方程,聯(lián)立直線與直線求,由垂直與軸列方程化簡(jiǎn),可證明直線過定點(diǎn).【小問1詳解】因?yàn)辄c(diǎn)在拋物線上,所以,即,,因?yàn)?,故解得,拋物線的標(biāo)準(zhǔn)方程為【小問2詳解】設(shè)直線的方程為,由,得,所以,由(1)可知當(dāng)時(shí),,此時(shí)直線的方程為,若時(shí),因?yàn)槿c(diǎn)共線,所以,即,又因?yàn)?,,化?jiǎn)可得,又,進(jìn)而可得,整理得,因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 考研政治輔導(dǎo)馬原
- 安全生產(chǎn)管理理念與案例分析
- 聯(lián)想猜詞游戲
- 車工工人轉(zhuǎn)正申請(qǐng)書15篇
- 2025年輪胎均勻性試驗(yàn)機(jī)項(xiàng)目合作計(jì)劃書
- 江蘇鹽城鹽城八校2025屆高三上學(xué)期開學(xué)考試化學(xué)試卷試題及答案解析
- 很好的高習(xí)參考計(jì)劃范文
- 駕校場(chǎng)地出租合同模板
- 技術(shù)設(shè)備融資租賃協(xié)議書
- 八年級(jí)語文上冊(cè)第二單元人物畫像6藤野先生高效教案新人教版
- 2024秋期國家開放大學(xué)本科《經(jīng)濟(jì)學(xué)(本)》一平臺(tái)在線形考(形考任務(wù)1至6)試題及答案
- 動(dòng)靜脈內(nèi)瘺成形術(shù)
- 法律意見書(適用于股權(quán)投資)
- JJF(蘇) 276-2024 接觸(觸針)式表面輪廓測(cè)量?jī)x校準(zhǔn)規(guī)范
- 2024-2025學(xué)年五年級(jí)科學(xué)上冊(cè)第二單元《地球表面的變化》測(cè)試卷(教科版)
- 污泥(廢水)運(yùn)輸服務(wù)方案(技術(shù)方案)
- 2024-2030年中國降壓藥行業(yè)市場(chǎng)規(guī)模分析及發(fā)展趨勢(shì)與投資研究報(bào)告
- 二十屆三中全會(huì)精神應(yīng)知應(yīng)會(huì)知識(shí)測(cè)試30題(附答案)
- 一例下肢靜脈血栓疑難病例護(hù)理討論
- 2024年信息系統(tǒng)項(xiàng)目管理師題庫及答案
- 輸血相關(guān)法律法規(guī)臨床輸血安全管理課件
評(píng)論
0/150
提交評(píng)論