2025屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
2025屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
2025屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
2025屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
2025屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆河南省鶴壁市第一中學(xué)數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)點(diǎn)P(2,1)作直線l,使l與雙曲線-y2=1有且僅有一個(gè)公共點(diǎn),這樣的直線l共有A.1條 B.2條C.3條 D.4條2.已知兩條異面直線的方向向量分別是,,則這兩條異面直線所成的角滿足()A. B.C. D.3.一質(zhì)點(diǎn)從出發(fā),做勻速直線運(yùn)動(dòng),每秒的速度為秒后質(zhì)點(diǎn)所處的位置為()A. B.C. D.4.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件5.在等比數(shù)列中,,,則等于A. B.C. D.或6.入冬以來(lái),梁老師準(zhǔn)備了4個(gè)不同的烤火爐,全部分發(fā)給樓的三個(gè)辦公室(每層樓各有一個(gè)辦公室).1,2樓的老師反映辦公室有點(diǎn)冷,所以1,2樓的每個(gè)辦公室至少需要1個(gè)烤火隊(duì),3樓老師表示不要也可以.則梁老師共有多少種分發(fā)烤火爐的方法()A.108 B.36C.50 D.867.在中,,,為所在平面上任意一點(diǎn),則的最小值為()A.1 B.C.-1 D.-28.已知拋物線內(nèi)一點(diǎn),過(guò)點(diǎn)的直線交拋物線于,兩點(diǎn),且點(diǎn)為弦的中點(diǎn),則直線的方程為()A. B.C D.9.若方程表示雙曲線,則的取值范圍是()A.或 B.C.或 D.10.已知直線與圓相交于,兩點(diǎn),則的取值范圍為()A. B.C. D.11.日常飲用水通常都是經(jīng)過(guò)凈化的,隨若水純凈度的提高,所需凈化費(fèi)用不斷增加.已知水凈化到純凈度為時(shí)所需費(fèi)用單位:元為那么凈化到純凈度為時(shí)所需凈化費(fèi)用的瞬時(shí)變化率是()元/t.A. B.C. D.12.已知拋物線的焦點(diǎn)為,為拋物線上一點(diǎn),為坐標(biāo)原點(diǎn),且,則()A.4 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出的題不再放回,在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為_(kāi)_______.14.若,且,則的最小值是____________.15.已知雙曲線(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)點(diǎn)F1且傾斜角為的直線l與雙曲線的左、右支分別交于點(diǎn)A,B.且|AF2|=|BF2|,則該雙曲線的離心率為_(kāi)___________.16.已知直線被圓截得的弦長(zhǎng)等于該圓的半徑,則實(shí)數(shù)_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,角A、B、C的度數(shù)成等差數(shù)列,(1)若,求c的值;(2)求最大值18.(12分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點(diǎn)M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值19.(12分)已知圓C的圓心為,且圓C經(jīng)過(guò)點(diǎn)(1)求圓C的一般方程;(2)若圓與圓C恰有兩條公切線,求實(shí)數(shù)m的取值范圍20.(12分)已知拋物線的焦點(diǎn)為F,其中P為E的準(zhǔn)線上一點(diǎn),O是坐標(biāo)原點(diǎn),且(1)求拋物線E的方程;(2)過(guò)的直線與E交于C,D兩點(diǎn),在x軸上是否存在定點(diǎn),使得x軸平分?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由21.(12分)設(shè)F為橢圓的右焦點(diǎn),過(guò)點(diǎn)的直線與橢圓C交于兩點(diǎn).(1)若點(diǎn)B為橢圓C的上頂點(diǎn),求直線的方程;(2)設(shè)直線的斜率分別為,,求證:為定值.22.(10分)已知圓與x軸交于A,B兩點(diǎn),P是該圓上任意一點(diǎn),AP,PB的延長(zhǎng)線分別交直線于M,N兩點(diǎn).(1)若弦AP長(zhǎng)為2,求直線PB的方程;(2)以線段MN為直徑作圓C,當(dāng)圓C面積最小時(shí),求此時(shí)圓C的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】利用幾何法,結(jié)合雙曲線的幾何性質(zhì),得出符合條件的結(jié)論.【詳解】由雙曲線的方程可知其漸近線方程為y=±x,則點(diǎn)P(2,1)在漸近線y=x上,又雙曲線的右頂點(diǎn)為A(2,0),如圖所示.滿足條件的直線l有兩條:x=2,y-1=-(x-2)【點(diǎn)睛】該題考查的是有關(guān)直線與雙曲線的公共點(diǎn)有一個(gè)的條件,結(jié)合雙曲線的性質(zhì),結(jié)合圖形,得出結(jié)果,屬于中檔題目.2、D【解析】利用向量夾角余弦公式直接求解【詳解】解:兩條異面直線的方向向量分別是,,這兩條異面直線所成的角滿足:,,故選:D3、A【解析】利用空間向量的線性運(yùn)算即可求解.【詳解】2秒后質(zhì)點(diǎn)所處的位置為.故選:A【點(diǎn)睛】本題考查了空間向量的線性運(yùn)算,考查了基本知識(shí)掌握的情況以及學(xué)生的綜合素養(yǎng),屬于基礎(chǔ)題.4、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.5、D【解析】∵為等比數(shù)列,∴,又∴為的兩個(gè)不等實(shí)根,∴∴或∴故選D6、C【解析】運(yùn)用分類計(jì)數(shù)原理,結(jié)合組合數(shù)定義進(jìn)行求解即可.【詳解】當(dāng)3樓不要烤火爐時(shí),不同的分發(fā)烤火爐的方法為:;當(dāng)3樓需要1個(gè)烤火爐時(shí),不同的分發(fā)烤火爐的方法為:;當(dāng)3樓需要2個(gè)烤火爐時(shí),不同的分發(fā)烤火爐的方法為:,所以分發(fā)烤火爐的方法總數(shù)為:,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用分類計(jì)數(shù)原理是解題的關(guān)鍵.7、C【解析】以為建立平面直角坐標(biāo)系,設(shè),把向量的數(shù)量積用坐標(biāo)表示后可得最小值【詳解】如圖,以為建立平面直角坐標(biāo)系,則,設(shè),,,,,∴,∴當(dāng)時(shí),取得最小值故選:C【點(diǎn)睛】本題考查向量的數(shù)量積,解題方法是建立平面直角坐標(biāo)系,把向量的數(shù)量積轉(zhuǎn)化為坐標(biāo)表示8、B【解析】利用點(diǎn)差法求出直線斜率,即可得出直線方程.【詳解】設(shè),則,兩式相減得,即,則直線方程為,即.故選:B.9、A【解析】由和的分母異號(hào)可得【詳解】由題意,解得或故選:A10、C【解析】求得直線恒過(guò)的定點(diǎn),找出弦長(zhǎng)取得最值的狀態(tài),利用弦長(zhǎng)公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過(guò)定點(diǎn),又,故點(diǎn)在圓內(nèi),又圓的圓心為則,此時(shí)直線過(guò)圓心;當(dāng)直線與直線垂直時(shí),取得最小值,此時(shí).故的取值范圍為.故選:.11、B【解析】由題意求出函數(shù)的導(dǎo)函數(shù),然后令即可求解【詳解】因?yàn)?,所以,則,故選:12、B【解析】依題意可得,設(shè),根據(jù)可得,,根據(jù)為拋物線上一點(diǎn),可得.【詳解】依題意可得,設(shè),由得,所以,,所以,,因?yàn)闉閽佄锞€上一點(diǎn),所以,解得.故選:B.【點(diǎn)睛】本題考查了平面向量加法的坐標(biāo)運(yùn)算,考查了求拋物線方程,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、.【解析】設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,求得,結(jié)合條件概率的計(jì)算公式,即可求解.【詳解】由題意,從5道試題中有3道代數(shù)題和2道幾何題,每次從中抽取一道題,抽出不再放回,設(shè)事件:第1次抽到代數(shù)題,事件:第2次抽到幾何題,則,,所以在第1次抽到代數(shù)題的條件下,第2次抽到幾何題的概率為:.故答案為:.14、【解析】應(yīng)用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當(dāng)且僅當(dāng),且,即時(shí)等號(hào)成立,∴最小值為.故答案為:15、【解析】由雙曲線的定義和直角三角形的勾股定理,以及解直角三角形,可得a,c的關(guān)系,再由離心率公式可得所求值【詳解】過(guò)F2作F2N⊥AB于點(diǎn)N,設(shè)|AF2|=|BF2|=m,因?yàn)橹本€l的傾斜角為,所以在直角三角形F1F2N中,,由雙曲線的定義可得|BF1|﹣|BF2|=2a,所以|BF1|=2a+m,同理可得|AF1|=m﹣2a,所以|AB|=|BF1|﹣|AF1|=4a,即|AN|=2a,所以|AF1|=c﹣2a,因此,在直角三角形ANF2中,|AF2|2=|NF2|2+|AN|2,所以(c)2=4a2+c2,所以c=a,則,故答案為:16、2或-4【解析】求出圓心到直線的距離,由幾何法表示出弦長(zhǎng),列出等量關(guān)系,即可求出結(jié)果.【詳解】由得,所以圓的圓心為,半徑,圓心到直線的距離,則由題可得,即,解得或.故答案為:2或.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)利用等差數(shù)列以及三角形內(nèi)角和,正弦定理以及余弦定理求解即可;(2)利用正弦定理以及兩角和與差的三角函數(shù),結(jié)合三角函數(shù)的最值求解即可【詳解】(1)由角A、B、C的度數(shù)成等差數(shù)列,得2B=A+C又,∴由正弦定理,得,即由余弦定理,得,即,解得(2)由正弦定理,得,∴,∴由,得所以當(dāng)時(shí),即時(shí),18、(1)證明見(jiàn)解析(2)【解析】(1)連接BD交AC于點(diǎn)E,連接ME,由所給條件推理出CA⊥AD,進(jìn)而得CA⊥平面PAD,證得結(jié)論(2)首先以A為原點(diǎn),射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,再利用向量法求解二面角即可【小問(wèn)1詳解】(1)連接BD交AC于點(diǎn)E,連接ME,如圖所示:∵平面MAC,PB平面PBD,平面PBD平面MAC=ME,∴,,則BC=1,而AB=2,,,∴AC2+BC2=4=AB2,∠ACB=90o,∠CAD=90o,即CA⊥AD,又PA⊥平面ABCD,CA平面ABCD,∴PA⊥CA,又PAAD=A,∴CA⊥平面PAD,而CA平面MAC,∴平面MAC⊥平面PAD【小問(wèn)2詳解】(2)如圖所示:以A為原點(diǎn),射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,則,∴,設(shè)平面PAB和平面MAC的一個(gè)法向量分別為,平面PAB和平面MAC所成銳二面角為,∴,,∴.19、(1)(2)【解析】(1)設(shè)圓C的一般方程為.由圓C的圓心和圓C經(jīng)過(guò)點(diǎn)求解;(2)根據(jù)圓與圓C恰有兩條公切線,由圓O與圓C相交求解.【小問(wèn)1詳解】解:設(shè)圓C的一般方程為∵圓C的圓心,∴即又圓C經(jīng)過(guò)點(diǎn),∴解得經(jīng)檢驗(yàn)得圓C的一般方程為;【小問(wèn)2詳解】由(1)知圓C的圓心為,半徑為5∵圓與圓C恰有兩條公切線,∴圓O與圓C相交∴∵,∴∴m的取值范圍是20、(1)(2)存在;【解析】(1)設(shè),利用向量坐標(biāo)運(yùn)算求出p即可;(2)設(shè)直線MC,MD的斜率分別為,,利用坐標(biāo)計(jì)算恒成立,即可求解.【小問(wèn)1詳解】拋物線的焦點(diǎn)為,設(shè),則,因?yàn)椋?,得所以拋物線E的方程為【小問(wèn)2詳解】假設(shè)在x軸上存在定點(diǎn),使得x軸平分設(shè)直線的方程為,設(shè)點(diǎn),,聯(lián)立,可得∵恒成立,∴,設(shè)直線MC,MD的斜率分別為,,則由定點(diǎn),使得x軸平分,則,所以把根與系數(shù)的關(guān)系代入可得,得故存在滿足題意.綜上所述,在x軸上存在定點(diǎn),使得x軸平分21、(1);(2)證明見(jiàn)解析.【解析】(1)求出的直線方程,結(jié)合橢圓方程可求的坐標(biāo),從而可求的直線方程;(2)設(shè),直線(或),則可用兩點(diǎn)的坐標(biāo)表示或,聯(lián)立直線的方程和橢圓的方程,消元后利用韋達(dá)定理可化簡(jiǎn)前者從而得到要證明的結(jié)論【詳解】(1)若B為橢圓的上頂點(diǎn),則.又過(guò)點(diǎn),故直線由可得,解得即點(diǎn),又,故直線;(2)設(shè),方法一:設(shè)直線,代入橢圓方程可得:所以,故,又均不為0,故,即為定值方法二:設(shè)直線,代入橢圓方程可得:所以所以,即,所以,即為定值方法三:設(shè)直線,代入橢圓方程可得:所以,所以所以,把代入得方法四:設(shè)直線,代入橢圓的方程可得,則所以.因?yàn)椋氲?【點(diǎn)睛】思路點(diǎn)睛:直線與圓錐曲線的位置關(guān)系中的定點(diǎn)、定值、最值問(wèn)題,一般可通過(guò)聯(lián)立方程組并消元得到關(guān)于或的一元二次方程,再把要求解的目標(biāo)代數(shù)式化為關(guān)于兩個(gè)的交點(diǎn)橫坐標(biāo)或縱坐標(biāo)的關(guān)系式,該關(guān)系中含有或,最后利用韋達(dá)定理把關(guān)系式轉(zhuǎn)化為若干變量的方程(或函數(shù)),從而可求定點(diǎn)、定值、最值問(wèn)題.22、(1)或;(2).【解析】(1)根據(jù)圓的直徑的性質(zhì),結(jié)合銳角三角函數(shù)定義進(jìn)行求解即可;(2)根據(jù)題意,結(jié)合基本不等式和圓的標(biāo)準(zhǔn)方程進(jìn)行求解即可.【小問(wèn)1詳解】在方程中,令,解得,或,因?yàn)锳P,PB的延長(zhǎng)線分別交直線于M,N兩點(diǎn),所以,圓心在x軸上

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論