2025屆河南省鶴壁市高二數(shù)學第一學期期末達標檢測試題含解析_第1頁
2025屆河南省鶴壁市高二數(shù)學第一學期期末達標檢測試題含解析_第2頁
2025屆河南省鶴壁市高二數(shù)學第一學期期末達標檢測試題含解析_第3頁
2025屆河南省鶴壁市高二數(shù)學第一學期期末達標檢測試題含解析_第4頁
2025屆河南省鶴壁市高二數(shù)學第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河南省鶴壁市高二數(shù)學第一學期期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則n的值為()A.7 B.8C.9 D.102.如圖,在四面體中,,,兩兩垂直,已知,,則直線與平面所成角的正弦值為()A. B.C. D.3.年月日我國公布了第七次全國人口普查結果.自新中國成立以來,我國共進行了七次全國人口普查,如圖為我國歷次全國人口普查人口性別構成及總人口性別比(以女性為,男性對女性的比例)統(tǒng)計圖,則下列說法錯誤的是()A.第五次全國人口普查時,我國總人口數(shù)已經突破億B.第一次全國人口普查時,我國總人口性別比最高C.我國歷次全國人口普查總人口數(shù)呈遞增趨勢D.我國歷次全國人口普查總人口性別比呈遞減趨勢4.已知點為直線上任意一點,為坐標原點.則以為直徑的圓除過定點外還過定點()A. B.C. D.5.復數(shù)的共軛復數(shù)的虛部為()A. B.C. D.6.命題:,否定是()A., B.,C., D.,7.已知拋物線的焦點為,過點且傾斜角為銳角的直線與交于、兩點,過線段的中點且垂直于的直線與的準線交于點,若,則的斜率為()A. B.C. D.8.若函數(shù)在上為單調減函數(shù),則的取值范圍()A. B.C. D.9.函數(shù)的圖象大致是()A. B.C. D.10.在正方體中,與直線和都垂直,則直線與的關系是()A.異面 B.平行C.垂直不相交 D.垂直且相交11.已知圓C的圓心在直線上,且與直線相切于點,則圓C方程為()A. B.C. D.12.已知,,,若,,共面,則λ等于()A. B.3C. D.9二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則___________.14.若命題P:對于任意,使不等式為真命題,則實數(shù)的取值范圍是___________.15.設拋物線的準線方程為__________.16.設拋物線C:的焦點為F,準線l與x軸的交點為M,P是C上一點,若|PF|=5,則|PM|=__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當時,求函數(shù)在區(qū)間上的最大值;(2)當時,求函數(shù)的極值.18.(12分)已知橢圓:經過點,設右焦點F,橢圓上存在點Q,使QF垂直于x軸且.(1)求橢圓的方程;(2)過點的直線與橢圓交于D,G兩點.是否存在直線使得以DG為直徑的圓過點E(-1,0)?若存在,求出直線的方程,若不存在,說明理由.19.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0(1)求角B的大??;(2)若b=4,△ABC的面積為,求a+c的值20.(12分)在平面直角坐標系中,動點到點的距離和它到直線的距離之比為.動點的軌跡為曲線.(1)求曲線的方程,并說明曲線是什么圖形;(2)已知曲線與軸的交點分別為,點是曲線上異于的一點,直線的斜率為,直線的斜率為,求證:為定值.21.(12分)在二項式展開式中,第3項和第4項的二項式系數(shù)比為.(1)求n的值及展開式中的常數(shù)項;(2)求展開式中系數(shù)最大的項是第幾項.22.(10分)已知拋物線C的頂點在坐標原點,焦點在x軸上,點在拋物線C上(1)求拋物線C的方程;(2)過拋物線C焦點F的直線l交拋物線于P,Q兩點,若求直線l的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據給定條件利用組合數(shù)的性質計算作答【詳解】因為,則由組合數(shù)性質有,即,所以n的值為10.故選:D2、D【解析】利用三線垂直建立空間直角坐標系,將線面角轉化為直線的方向向量和平面的法向量所成的角,再利用空間向量進行求解.【詳解】以,,所在直線為軸,軸,軸建立空間直角坐標系(如圖所示),則,,,,,設平面的一個法向量為,則,即,令,則,,所以平面的一個法向量為;設直線與平面所成角為,則,即直線與平面所成角的正弦值為.故選:D.3、D【解析】根據統(tǒng)計圖判斷各選項的對錯.【詳解】由統(tǒng)計圖第五次全國人口普查時,男性和女性人口數(shù)都超過6億,故總人口數(shù)超過12億,A對,由統(tǒng)計圖,第一次全國人口普查時,我國總人口性別比為107.56,超過余下幾次普查的人口的性別比,B對,由統(tǒng)計圖可知,我國歷次全國人口普查總人口數(shù)呈遞增趨勢,C對,由統(tǒng)計圖可知,第二次,第三次,第四次,第五次時總人口性別比呈遞增趨勢,D錯,D錯,故選:D.4、D【解析】設垂直于直線,可知圓恒過垂足;兩條直線方程聯(lián)立可求得點坐標.【詳解】設垂直于直線,垂足為,則直線方程為:,由圓的性質可知:以為直徑的圓恒過點,由得:,以為直徑的圓恒過定點.故選:D.5、B【解析】先根據復數(shù)除法與加法運算求解得,再求共軛復數(shù)及其虛部.【詳解】解:,所以其共軛復數(shù)為,其虛部為故選:B6、D【解析】根據給定條件利用全稱量詞命題的否定是存在量詞命題直接寫出作答.【詳解】命題:,是全稱量詞命題,其否定是存在量詞命題,所以命題:,的否定是:,.故選:D7、C【解析】設直線的方程為,其中,設點、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達定理,求出、,根據條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點為,設直線的方程為,其中,設點、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因為,則,因為,解得,因此,直線的斜率為.故選:C.8、A【解析】分析可知對任意的恒成立,利用參變量分離法結合二次函數(shù)的基本性質可求得實數(shù)的取值范圍.【詳解】因為,則,由題意可知,對任意的恒成立,則,當時,在上單調遞減,在上單調遞減,所以,,故.故選:A.9、A【解析】根據函數(shù)的定義域及零點的情況即可得到答案.【詳解】函數(shù)的定義域為,則排除選項、,當時,,則在上單調遞減,且,,由零點存在定理可知在上存在一個零點,則排除,故選:.10、B【解析】以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,根據向量垂直的坐標表示求出,再利用向量的坐標運算可得,根據共線定理即可判斷.【詳解】設正方體的棱長為1.以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,則.設,則,取.,.故選:B【點睛】本題考查了空間向量垂直的坐標表示、空間向量的坐標表示、空間向量共線定理,屬于基礎題.11、C【解析】設出圓心坐標,根據垂直直線的斜率關系求得圓心坐標,結合兩點距離公式得半徑,即可得圓方程【詳解】設圓心為,則圓心與點的連線與直線l垂直,即,則點,所以圓心為,半徑,所以方程為,故選:C12、C【解析】由,,共面,設,列方程組能求出λ的值【詳解】∵,,共面,∴設(實數(shù)m、n),即,∴,解得故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求導數(shù),代入可得.【詳解】因為所以,則,故.故答案為:14、【解析】根據題意,結合指數(shù)函數(shù)不等式,將原問題轉化為關于的不等式,對于任意恒成立,即可求解.【詳解】根據題意,知對于任意,恒成立,即,化簡得,令,,則恒成立,即,解得,故.故答案為:.15、【解析】由題意結合拋物線的標準方程確定其準線方程即可.【詳解】由拋物線方程可得,則,故準線方程為.故答案為【點睛】本題主要考查由拋物線方程確定其準線方法,屬于基礎題.16、【解析】根據拋物線的性質及拋物線方程可求坐標,進而得解.【詳解】由拋物線的方程可得焦點,準線,由題意可得,設,有拋物線的性質可得:,解得x=4,代入拋物線的方程可得,所以,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)2(2)當時,沒有極值;當時,極大值為,極小值為.【解析】(1)當時,,可得:.,,得或,列出函數(shù)單調性表格,即可最大值;(2),令,得或,分別討論和,即可求得的極值.【詳解】(1)當時,,所以.令,得或,列表如下:-2-11+0-0+極大值極小值由于,,所以函數(shù)在區(qū)間上的最大值為2.(2),令,得或.當時,,所以函數(shù)在上單調遞增,無極值.當時,列表如下:+0-0+極大值極小值函數(shù)的極大值為,極小值為.【點睛】本題主要考查根據導數(shù)求函數(shù)單調性和極值,解題關鍵是掌握導數(shù)求單調性的方法和極值定義,考查分析能力和計算能力,屬于中檔題.18、(1);(2)存在,或.【解析】(1)根據題意,列出的方程組,求得,則橢圓方程得解;(2)對直線的斜率進行討論,當斜率存在時,設出直線方程,聯(lián)立橢圓方程,利用韋達定理,轉化題意為,求解即可.小問1詳解】由題意,得,設,將代入橢圓方程,得,所以,解得,所以橢圓的方程為.【小問2詳解】當斜率不存在時,即時,,為橢圓短軸兩端點,則以為直徑的圓為,恒過點,滿足題意;當斜率存在時,設,,,由得:,,解得:,,若以為直徑的圓過點,則,即,又,,,解得:,滿足,即,此時直線的方程為綜上,存在直線使得以為直徑的圓過點,的方程為或19、(1)(2)【解析】(1)利用正弦定理化簡,通過兩角和與差的三角函數(shù)求出,即可得到結果(2)利用三角形的面積求出,通過由余弦定理求解即可【詳解】解:(1)因為bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【點睛】本題主要考查了利用正、余弦定理及三角形的面積公式解三角形問題,其中在解有關三角形的題目時,要有意識地考慮用哪個定理更合適,或是兩個定理都要用.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到20、(1),曲線是以為焦點的橢圓;(2)證明見解析.【解析】(1)由題可得,即求;(2)利用斜率公式及橢圓方程計算即得.【小問1詳解】設點坐標為,根據題意,得,左右同時平方,得,整理得,,即,所以曲線的方程是,曲線是以為焦點的橢圓.【小問2詳解】由題意得,設的坐標是,因為點在曲線上,所以,因為,所以,所以為定值.21、(1),常數(shù)項為(2)5【解析】(1)求出二項式的通項公式,求出第3項和第4項的二項式系數(shù),再利用已知條件列方程求出的值,從而可求出常數(shù)項,(2)設展開式中系數(shù)最大的項是第項,則,從而可求出結果【小問1詳解】二項式展開式的通項公式為,因為第3項和第4項的二項式系數(shù)比為,所以,化簡得,解得,所以,令,得,所以常數(shù)項為【小問2詳解】設展開式中系數(shù)最大的項是第項,則,,解得,因為,所以,所以展開式中系數(shù)最大的項是第5項22、(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論