2025屆湖南省安仁一中、資興市立中學高三數(shù)學第一學期期末聯(lián)考試題含解析_第1頁
2025屆湖南省安仁一中、資興市立中學高三數(shù)學第一學期期末聯(lián)考試題含解析_第2頁
2025屆湖南省安仁一中、資興市立中學高三數(shù)學第一學期期末聯(lián)考試題含解析_第3頁
2025屆湖南省安仁一中、資興市立中學高三數(shù)學第一學期期末聯(lián)考試題含解析_第4頁
2025屆湖南省安仁一中、資興市立中學高三數(shù)學第一學期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆湖南省安仁一中、資興市立中學高三數(shù)學第一學期期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量的分布列是則()A. B. C. D.2.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.633.已知集合,則=()A. B. C. D.4.設(shè)集合,,若,則的取值范圍是()A. B. C. D.5.在復(fù)平面內(nèi),復(fù)數(shù)z=i對應(yīng)的點為Z,將向量繞原點O按逆時針方向旋轉(zhuǎn),所得向量對應(yīng)的復(fù)數(shù)是()A. B. C. D.6.已知,如圖是求的近似值的一個程序框圖,則圖中空白框中應(yīng)填入A. B.C. D.7.設(shè)遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.8.tan570°=()A. B.- C. D.9.若非零實數(shù)、滿足,則下列式子一定正確的是()A. B.C. D.10.已知復(fù)數(shù)滿足,則()A. B.2 C.4 D.311.設(shè)不等式組,表示的平面區(qū)域為,在區(qū)域內(nèi)任取一點,則點的坐標滿足不等式的概率為A. B.C. D.12.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,四面體的一條棱長為,其余棱長均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為____.14.如圖梯形為直角梯形,,圖中陰影部分為曲線與直線圍成的平面圖形,向直角梯形內(nèi)投入一質(zhì)點,質(zhì)點落入陰影部分的概率是_____________15.在的展開式中,的系數(shù)為______用數(shù)字作答16.在直三棱柱內(nèi)有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關(guān)于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.18.(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.19.(12分)某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道將分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).設(shè),,(單位:百米).(1)分別求,關(guān)于x的函數(shù)關(guān)系式;(2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.20.(12分)已知函數(shù)有兩個極值點,.(1)求實數(shù)的取值范圍;(2)證明:.21.(12分)的內(nèi)角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.22.(10分)已知矩陣不存在逆矩陣,且非零特低值對應(yīng)的一個特征向量,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

利用分布列求出,求出期望,再利用期望的性質(zhì)可求得結(jié)果.【詳解】由分布列的性質(zhì)可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.2、B【解析】

根據(jù)二項式展開式的通項公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【點睛】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識,考查理解能力,計算能力,分類討論和應(yīng)用意識.3、D【解析】

先求出集合A,B,再求集合B的補集,然后求【詳解】,所以.故選:D【點睛】此題考查的是集合的并集、補集運算,屬于基礎(chǔ)題.4、C【解析】

由得出,利用集合的包含關(guān)系可得出實數(shù)的取值范圍.【詳解】,且,,.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關(guān)系求參數(shù),考查計算能力,屬于基礎(chǔ)題.5、A【解析】

由復(fù)數(shù)z求得點Z的坐標,得到向量的坐標,逆時針旋轉(zhuǎn),得到向量的坐標,則對應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點Z(0,1),

∴=(0,1),將繞原點O逆時針旋轉(zhuǎn)得到,

設(shè)=(a,b),,則,即,

又,解得:,∴,對應(yīng)復(fù)數(shù)為.故選:A.【點睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.6、C【解析】

由于中正項與負項交替出現(xiàn),根據(jù)可排除選項A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應(yīng)填入,故選C.7、A【解析】

根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【點睛】本題主要考查等比數(shù)列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.8、A【解析】

直接利用誘導(dǎo)公式化簡求解即可.【詳解】tan570°=tan(360°+210°)=tan210°=tan(180°+30°)=tan30°=.故選:A.【點睛】本題考查三角函數(shù)的恒等變換及化簡求值,主要考查誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.9、C【解析】

令,則,,將指數(shù)式化成對數(shù)式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數(shù)式與對數(shù)式的轉(zhuǎn)化,考查推理能力,屬于中等題.10、A【解析】

由復(fù)數(shù)除法求出,再由模的定義計算出模.【詳解】.故選:A.【點睛】本題考查復(fù)數(shù)的除法法則,考查復(fù)數(shù)模的運算,屬于基礎(chǔ)題.11、A【解析】

畫出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫出所表示的區(qū)域,易知,所以的面積為,滿足不等式的點,在區(qū)域內(nèi)是一個以原點為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項.【點睛】本題考查由約束條件畫可行域,求幾何概型,屬于簡單題.12、C【解析】

根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C【點睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、(或?qū)懗?【解析】試題分析:設(shè),取中點則,因此,所以,因為在單調(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點:函數(shù)最值,函數(shù)單調(diào)區(qū)間14、【解析】

聯(lián)立直線與拋物線方程求出交點坐標,再利用定積分求出陰影部分的面積,利用梯形的面積公式求出,最后根據(jù)幾何概型的概率公式計算可得;【詳解】解:聯(lián)立解得或,即,,,,,故答案為:【點睛】本題考查幾何概型的概率公式的應(yīng)用以及利用微積分基本定理求曲邊形的面積,屬于中檔題.15、1【解析】

利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.16、【解析】

先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設(shè)球O1的半徑為,由題得,所以棱柱的側(cè)棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內(nèi)切球和外接球問題,考查球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)12(2)【解析】

(1)根據(jù)焦距得焦點坐標,結(jié)合橢圓上的點的坐標,根據(jù)定義;(2)求出橢圓的標準方程,設(shè),聯(lián)立直線和橢圓,結(jié)合韋達定理表示出面積,即可求解最大值.【詳解】(1)設(shè)橢園的焦距為,則,故.則橢圓過點,由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設(shè),則,,,,,當且僅當在短軸頂點處取等,故面積的最大值為.【點睛】此題考查根據(jù)橢圓的焦點和橢圓上的點的坐標求橢圓的標準方程,根據(jù)直線與橢圓的交點關(guān)系求三角形面積的最值,涉及韋達定理的使用,綜合性強,計算量大.18、(1);(2)證明見解析.【解析】

(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當時,等價于,該不等式恒成立,當時,等價于,該不等式解集為,當時,等價于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因為,,,所以,,,所以,當且僅當時等號成立.【點睛】本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.19、(1),.,.(2)當百米時,兩條直道的長度之和取得最小值百米.【解析】

(1)由,可解得.方法一:再在中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式;在和中,利用余弦定理,可得關(guān)于x的函數(shù)關(guān)系式.方法二:在中,可得,則有,化簡整理即得;同理,化簡整理即得.(2)由(1)和基本不等式,計算即得.【詳解】解:(1),是邊長為3的等邊三角形,又,,.由,得.法1:在中,由余弦定理,得.故直道長度關(guān)于x的函數(shù)關(guān)系式為,.在和中,由余弦定理,得①②因為M為的中點,所以.由①②,得,所以,所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.法2:因為在中,,所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.在中,因為M為的中點,所以.所以.所以,直道長度關(guān)于x的函數(shù)關(guān)系式為,.(2)由(1)得,兩條直道的長度之和為(當且僅當即時取“”).故當百米時,兩條直道的長度之和取得最小值百米.【點睛】本題考查了余弦定理和基本不等式,第一問也可以利用三角形中的向量關(guān)系進行求解,屬于中檔題.20、(1)(2)證明見解析【解析】

(1)先求得導(dǎo)函數(shù),根據(jù)兩個極值點可知有兩個不等實根,構(gòu)造函數(shù),求得;討論和兩種情況,即可確定零點的情況,即可由零點的情況確定的取值范圍;(2)根據(jù)極值點定義可知,,代入不等式化簡變形后可知只需證明;構(gòu)造函數(shù),并求得,進而判斷的單調(diào)區(qū)間,由題意可知,并設(shè),構(gòu)造函數(shù),并求得,即可判斷在內(nèi)的單調(diào)性和最值,進而可得,即可由函數(shù)性質(zhì)得,進而由單調(diào)性證明,即證明,從而證明原不等式成立.【詳解】(1)函數(shù)則,因為存在兩個極值點,,所以有兩個不等實根.設(shè),所以.①當時,,所以在上單調(diào)遞增,至多有一個零點,不符合題意.②當時,令得,0減極小值增所以,即.又因為,,所以在區(qū)間和上各有一個零點,符合題意,綜上,實數(shù)的取值范圍為.(2)證明:由題意知,,所以,.要證明,只需證明,只需證明.因為,,所以.設(shè),則,所以在上是增函數(shù),在上是減函數(shù).因為,不妨設(shè),設(shè),,則,當時,,,所以,所以在上是增函數(shù),所以,所以,即.因為,所以,所以.因為,,且在上是減函數(shù),所以,即,所以原命題成立,得證.【點睛】本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值點,由導(dǎo)數(shù)證明不等式,構(gòu)造函數(shù)法的綜合應(yīng)用,極值點偏移證明不等式成立的應(yīng)用,是高考的常考點和熱點,屬于難題.21、(1),(2)【解析】

(1)先由正弦定理,得到,進而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論