江蘇睢寧中學(xué)北校2025屆數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第1頁
江蘇睢寧中學(xué)北校2025屆數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第2頁
江蘇睢寧中學(xué)北校2025屆數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第3頁
江蘇睢寧中學(xué)北校2025屆數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第4頁
江蘇睢寧中學(xué)北校2025屆數(shù)學(xué)高二上期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

江蘇睢寧中學(xué)北校2025屆數(shù)學(xué)高二上期末統(tǒng)考試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.用數(shù)學(xué)歸納法證明“”時(shí),由假設(shè)證明時(shí),不等式左邊需增加的項(xiàng)數(shù)為()A. B.C. D.2.傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家用沙粒和小石子研究數(shù),他們根據(jù)沙粒和石子所排列的形狀把數(shù)分成許多類,若:三角形數(shù)、、、、,正方形數(shù)、、、、等等.如圖所示為正五邊形數(shù),將五邊形數(shù)按從小到大的順序排列成數(shù)列,則此數(shù)列的第4項(xiàng)為()A. B.C. D.3.已知實(shí)數(shù)x,y滿足,則的最大值為()A. B.C.2 D.14.若圓C與直線:和:都相切,且圓心在y軸上,則圓C的方程為()A. B.C. D.5.已知圓的圓心在軸上,半徑為2,且與直線相切,則圓的方程為A. B.或C. D.或6.橢圓的左右兩焦點(diǎn)分別為,,過垂直于x軸的直線交C于A,B兩點(diǎn),,則橢圓C的離心率是()A. B.C. D.7.“”是“方程是圓的方程”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.為了了解1200名學(xué)生對學(xué)校某項(xiàng)教改實(shí)驗(yàn)的意見,打算從中抽取一個(gè)容量為40的樣本,采用系統(tǒng)抽樣方法,則分段的間隔為()A.40 B.30C.20 D.129.已知函數(shù)及其導(dǎo)函數(shù),若存在使得,則稱是的一個(gè)“巧值點(diǎn)”.下列選項(xiàng)中沒有“巧值點(diǎn)”的函數(shù)是()A. B.C. D.10.下列有關(guān)命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無理數(shù),則也是無理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題11.劉老師在課堂中與學(xué)生探究某個(gè)圓時(shí),有四位同學(xué)分別給出了一個(gè)結(jié)論.甲:該圓經(jīng)過點(diǎn).乙:該圓半徑為.丙:該圓的圓心為.丁:該圓經(jīng)過點(diǎn),如果只有一位同學(xué)的結(jié)論是錯(cuò)誤的,那么這位同學(xué)是()A.甲 B.乙C.丙 D.丁12.若向量,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與曲線有且僅有一個(gè)公共點(diǎn).則b的取值范圍是__________14.已知拋物線的焦點(diǎn)為F,A為拋物線C上一點(diǎn).以F為圓心,F(xiàn)A為半徑的圓交拋物線C的準(zhǔn)線于B,D兩點(diǎn),A,F(xiàn),B三點(diǎn)共線,且,則______15.設(shè)為第二象限角,若,則__________16.已知函數(shù),數(shù)列是正項(xiàng)等比數(shù)列,且,則__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足(1)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和18.(12分)在平面直角坐標(biāo)系xOy中,橢圓C的左,右焦點(diǎn)分別為F1(﹣,0),F(xiàn)2(,0),且橢圓C過點(diǎn)(﹣).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)設(shè)過(0,﹣2)的直線l與橢圓C交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求直線l的方程.19.(12分)(1)求焦點(diǎn)在x軸上,虛軸長為12,離心率為的雙曲線的標(biāo)準(zhǔn)方程;(2)求經(jīng)過點(diǎn)的拋物線的標(biāo)準(zhǔn)方程;20.(12分)已知數(shù)列的首項(xiàng),其前n項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前n項(xiàng)和為,且,求n.21.(12分)已知數(shù)列的前n項(xiàng)和為,且,,數(shù)列滿足:,,,.(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和;(3)若不等式對任意恒成立,求實(shí)數(shù)k的取值范圍22.(10分)已知函數(shù).(1)若,求函數(shù)在處的切線方程;(2)討論函數(shù)在上的單調(diào)性.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】當(dāng)成立,寫出左側(cè)的表達(dá)式,當(dāng)時(shí),寫出對應(yīng)的關(guān)系式,觀察計(jì)算即可【詳解】從到成立時(shí),左邊增加的項(xiàng)為,因此增加的項(xiàng)數(shù)是,故選:C2、D【解析】根據(jù)前三個(gè)五邊形數(shù)可推斷出第四個(gè)五邊形數(shù).【詳解】第一個(gè)五邊形數(shù)為,第二個(gè)五邊形數(shù)為,第三個(gè)五邊形數(shù)為,故第四個(gè)五邊形數(shù)為.故選:D.3、A【解析】作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求出的最大值.【詳解】作出可行域如圖所示,由可知,此直線可用由直線平移得到,求的最大值,即直線的截距最大,當(dāng)直線過直線的交點(diǎn)時(shí)取最大值,即故選:4、B【解析】首先求出兩平行直線間的距離,即可求出圓的半徑,設(shè)圓心坐標(biāo)為,,利用圓心到直線的距離等于半徑得到方程,求出的值,即可得解;【詳解】解:因?yàn)橹本€:和:的距離,由圓C與直線:和:都相切,所以圓的半徑為,又圓心在軸上,設(shè)圓心坐標(biāo)為,,所以圓心到直線的距離等于半徑,即,所以或(舍去),所以圓心坐標(biāo)為,故圓的方程為;故選:B5、D【解析】設(shè)圓心坐標(biāo),由點(diǎn)到直線距離公式可得或,進(jìn)而求得答案【詳解】設(shè)圓心坐標(biāo),因?yàn)閳A與直線相切,所以由點(diǎn)到直線的距離公式可得,解得或.因此圓的方程為或.【點(diǎn)睛】本題考查利用直線與圓的位置關(guān)系求圓的方程,屬于一般題6、C【解析】由題可得為等邊三角形,可得,即得.【詳解】∵過垂直于x軸的直線交橢圓C于A,B兩點(diǎn),,∴為等邊三角形,由代入,可得,∴,所以,即,又,解得.故選:C.7、A【解析】利用充分條件和必要條件的定義判斷.【詳解】若方程表示圓,則,即,解得或,故“”是“方程是圓的方程”的充分不必要條件,故選:A8、B【解析】根據(jù)系統(tǒng)抽樣的概念,以及抽樣距的求法,可得結(jié)果.【詳解】由總數(shù)為1200,樣本容量為40,所以抽樣距為:故選:B【點(diǎn)睛】本題考查系統(tǒng)抽樣的概念,屬基礎(chǔ)題.9、C【解析】利用新定義:存在使得,則稱是的一個(gè)“巧點(diǎn)”,對四個(gè)選項(xiàng)中的函數(shù)進(jìn)行一一的判斷即可【詳解】對于A,,則,令,解得或,即有解,故選項(xiàng)A的函數(shù)有“巧值點(diǎn)”,不符合題意;對于B,,則,令,令,則g(x)在x>0時(shí)為增函數(shù),∵(1),(e),由零點(diǎn)的存在性定理可得,在上存在唯一零點(diǎn),即方程有解,故選項(xiàng)B的函數(shù)有“巧值點(diǎn)”,不符合題意;對于C,,則,令,故方程無解,故選項(xiàng)C的函數(shù)沒有“巧值點(diǎn)”,符合題意;對于D,,則,令,則.∴方程有解,故選項(xiàng)D的函數(shù)有“巧值點(diǎn)”,不符合題意故選:C10、C【解析】對于選項(xiàng)A:根據(jù)偶數(shù)性質(zhì)即可判斷;對于選項(xiàng)B:通過舉例即可判斷,對于選項(xiàng)C:利用逆否命題的概念即可判斷;對于選項(xiàng)D:根據(jù)且、或和非的關(guān)系即可判斷.【詳解】選項(xiàng)A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯(cuò)誤;選項(xiàng)B:原命題的逆命題:若是無理數(shù),則也為正無理數(shù),當(dāng),即為無理數(shù),但是有理數(shù),故B錯(cuò)誤;選項(xiàng)C:由逆否命題的概念可知,C正確;選項(xiàng)D:由為假命題可知,,至少有一個(gè)為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯(cuò)誤.故選:C.11、D【解析】分別假設(shè)甲、乙、丙、丁是錯(cuò)誤的,看能否推出矛盾,進(jìn)而推導(dǎo)出答案.【詳解】假設(shè)甲的結(jié)論錯(cuò)誤,根據(jù)丙和丁的結(jié)論,該圓的半徑為6,與乙的結(jié)論矛盾;假設(shè)乙的結(jié)論錯(cuò)誤,圓心到點(diǎn)的距離與圓心到點(diǎn)的距離不相等,不成立;假設(shè)丙的結(jié)論錯(cuò)誤﹐點(diǎn)到點(diǎn)的距離大于,不成立;假設(shè)丁的結(jié)論錯(cuò)誤,圓心到點(diǎn)的距離等于,成立.故選:D12、D【解析】由向量數(shù)量積的坐標(biāo)運(yùn)算求得數(shù)量積,模,結(jié)合向量的共線定義判斷【詳解】由已知,,,與不垂直,若,則,,但是,,因此與不共線故選:D二、填空題:本題共4小題,每小題5分,共20分。13、或.【解析】根據(jù)曲線方程得曲線的軌跡是個(gè)半圓,數(shù)形結(jié)合分析得兩種情況:(1)直線與半圓相切有一個(gè)交點(diǎn);(2)直線與半圓相交于一個(gè)點(diǎn),綜合兩種情況可得答案.【詳解】由曲線,可得,表示以原點(diǎn)為圓心,半徑為的右半圓,是傾斜角為的直線與曲線有且只有一個(gè)公共點(diǎn)有兩種情況:(1)直線與半圓相切,根據(jù),所以,結(jié)合圖像可得;(2)直線與半圓的上半部分相交于一個(gè)交點(diǎn),由圖可知.故答案為:或.【點(diǎn)睛】方法點(diǎn)睛:處理直線與圓位置關(guān)系時(shí),若兩方程已知或圓心到直線的距離易表達(dá),則用幾何法;若方程中含有參數(shù),或圓心到直線的距離的表達(dá)較繁瑣,則用代數(shù)法;如果或有限制,需要數(shù)形結(jié)合進(jìn)行分析.14、2【解析】求得拋物線的焦點(diǎn)和準(zhǔn)線方程,由,,三點(diǎn)共線,推得,由三角形的中位線性質(zhì)可得到準(zhǔn)線的距離,可得的值【詳解】拋物線的焦點(diǎn)為,,準(zhǔn)線方程為,因?yàn)?,,三點(diǎn)共線,可得為圓的直徑,如圖示:設(shè)準(zhǔn)線交x軸于E,所以,則,由拋物線的定義可得,又是的中點(diǎn),所以到準(zhǔn)線的距離為,故答案為:215、【解析】先求出,再利用二倍角公式求的值.【詳解】因?yàn)闉榈诙笙藿?,若,所?所以.故答案為【點(diǎn)睛】本題主要考查同角三角函數(shù)的平方關(guān)系,考查二倍角的正弦公式,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.16、##9.5【解析】根據(jù)給定條件計(jì)算當(dāng)時(shí),的值,再結(jié)合等比數(shù)列性質(zhì)計(jì)算作答.【詳解】函數(shù),當(dāng)時(shí),,因數(shù)列是正項(xiàng)等比數(shù)列,且,則,,同理,令,又,則有,,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析,;(2).【解析】(1)由得是公差為2的等差數(shù)列,再由可得答案.(2),分為奇數(shù)、偶數(shù),分組求和即可求解.【小問1詳解】由,得,故是公差為2的等差數(shù)列,故,由,故,于是.【小問2詳解】依題意,,當(dāng)為偶數(shù)時(shí),故,當(dāng)為奇數(shù)時(shí),,綜上,.18、(1)(2)或.【解析】(1)設(shè)標(biāo)準(zhǔn)方程代入點(diǎn)的坐標(biāo),解方程組得解.(2)設(shè)直線方程代入橢圓方程消元,韋達(dá)定理整體思想,可得直線斜率得解.【小問1詳解】因?yàn)闄E圓C的焦點(diǎn)為,可設(shè)橢圓C的方程為,又點(diǎn)在橢圓C上,所以,解得,因此,橢圓C的方程為;【小問2詳解】當(dāng)直線的斜率不存在時(shí),顯然不滿足題意;當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,設(shè),,因?yàn)?,所以,因?yàn)椋?,所以,所以,①?lián)立方程,消去得,則,代入①,得,解得,經(jīng)檢驗(yàn),此時(shí)直線與橢圓相交,所以直線l的方程是或.19、(1);(2)或.【解析】(1)由虛軸長是12求出半虛軸b,根據(jù)雙曲線的性質(zhì)c2=a2+b2以及離心率,求出a2,寫出雙曲線的標(biāo)準(zhǔn)方程;(2)設(shè)出拋物線方程,利用經(jīng)過,求出拋物線中的參數(shù),即可得到拋物線方程【詳解】焦點(diǎn)在x軸上,設(shè)所求雙曲線的方程為=1(a>0,b>0)由題意,得解得b=6,解得,所以焦點(diǎn)在x軸上的雙曲線的方程為(2)由于點(diǎn)P在第三象限,所以拋物線方程可設(shè)為:或(p>0)當(dāng)方程為,將點(diǎn)代入得16=4p,即p=4,拋物線方程為:;當(dāng)方程為,將點(diǎn)代入得4=8p,即p=,拋物線方程為:;20、(1)(2)【解析】(1)由條件得,則利用等差數(shù)列的定義可得答案;(2)利用裂項(xiàng)求和求出,再根據(jù)可求出n.【小問1詳解】由得,從而數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,所以;【小問2詳解】由(1)得,由得又,所以.21、(1),;(2);(3).【解析】(1)由可得數(shù)列是等比數(shù)列,即可求得,由得數(shù)列是等差數(shù)列,即可求得.(2)由(1)可得,再利用錯(cuò)位相減法求和即得.(3)將問題等價(jià)轉(zhuǎn)化為對任意恒成立,構(gòu)造數(shù)列并判斷其單調(diào)性,即可求解作答.【小問1詳解】數(shù)列的前項(xiàng)和為,,,當(dāng)時(shí),,則,而當(dāng)時(shí),,即得,因此,數(shù)列是以1為首項(xiàng),3為公比的等比數(shù)列,則,數(shù)列中,,,則數(shù)列是等差數(shù)列,而,,即有公差,則,所以數(shù)列,的通項(xiàng)公式分別是:,.【小問2詳解】由(1)知,,則,則有,兩式相減得:,從而得,所以數(shù)列的前n項(xiàng)和.【小問3詳解】由(1)知,,依題意得對任意恒成立,設(shè),則,當(dāng),,為單調(diào)遞減數(shù)列,當(dāng),,為單調(diào)遞增數(shù)列,顯然有,則當(dāng)時(shí),取得最大值,即最大值是,因此,,所以實(shí)數(shù)k取值范圍是.【點(diǎn)睛】思路點(diǎn)睛:一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論