山東省棗莊市部分重點(diǎn)高中2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁
山東省棗莊市部分重點(diǎn)高中2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁
山東省棗莊市部分重點(diǎn)高中2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁
山東省棗莊市部分重點(diǎn)高中2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁
山東省棗莊市部分重點(diǎn)高中2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山東省棗莊市部分重點(diǎn)高中2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列求導(dǎo)不正確的是()A B.C. D.2.已知雙曲線的離心率為2,則()A.2 B.C. D.13.函數(shù)的圖象的大致形狀是()A. B.C. D.4.已知是拋物線上的一點(diǎn),是拋物線的焦點(diǎn),若以為始邊,為終邊的角,則等于()A. B.C. D.5.德國數(shù)學(xué)家米勒曾提出最大視角問題,這一問題一般的描述是:已知點(diǎn)A、B是的ON邊上的兩個(gè)定點(diǎn),C是OM邊上的一個(gè)動(dòng)點(diǎn),當(dāng)C在何處時(shí),最大?問題的答案是:當(dāng)且僅當(dāng)?shù)耐饨訄A與邊OM相切于點(diǎn)C時(shí),最大.人們稱這一命題為米勒定理.已知點(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0),R是y軸正半軸上的一動(dòng)點(diǎn),當(dāng)最大時(shí),點(diǎn)R的縱坐標(biāo)為()A.1 B.C. D.26.橢圓()的右頂點(diǎn)是拋物線的焦點(diǎn),且短軸長(zhǎng)為2,則該橢圓方程為()A. B.C. D.7.已知直線經(jīng)過拋物線的焦點(diǎn),且與該拋物線交于,兩點(diǎn),若滿足,則直線的方程為()A. B.C. D.8.在正方體中,E,F(xiàn)分別為AB,CD的中點(diǎn),則與平面所成的角的正弦值為()A. B.C. D.9.在等差數(shù)列中,若,則()A.6 B.9C.11 D.2410.已知橢圓上的一點(diǎn)到橢圓一個(gè)焦點(diǎn)的距離為3,則點(diǎn)到另一焦點(diǎn)的距離為()A.1 B.3C.5 D.711.第屆全運(yùn)會(huì)于年月在陜西西安順利舉辦,其中水上項(xiàng)目在西安奧體中心游泳跳水館進(jìn)行,為了應(yīng)對(duì)比賽,大會(huì)組委會(huì)將對(duì)泳池進(jìn)行檢修,已知泳池深度為,其容積為,如果池底每平方米的維修費(fèi)用為元,設(shè)入水處的較短池壁長(zhǎng)度為,且據(jù)估計(jì)較短的池壁維修費(fèi)用與池壁長(zhǎng)度成正比,且比例系數(shù)為,較長(zhǎng)的池壁維修費(fèi)用滿足代數(shù)式,則當(dāng)泳池的維修費(fèi)用最低時(shí)值為()A. B.C. D.12.十二平均律是我國明代音樂理論家和數(shù)學(xué)家朱載堉發(fā)明的.明萬歷十二年(公元1584年),他寫成《律學(xué)新說》,提出了十二平均律的理論.十二平均律的數(shù)學(xué)意義是:在1和2之間插入11個(gè)正數(shù),使包含1和2的這13個(gè)數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個(gè)數(shù)應(yīng)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)僅有一個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.14.已知向量,,若,則實(shí)數(shù)=________.15.設(shè)函數(shù)是函數(shù)的導(dǎo)函數(shù),已知,且,則使得成立的x的取值范圍是_________.16.已知雙曲線中心在坐標(biāo)原點(diǎn),左右焦點(diǎn)分別為,漸近線分別為,過點(diǎn)且與垂直的直線分別交于兩點(diǎn),且,則雙曲線的離心率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,平面,底面為矩形,,,為的中點(diǎn),.請(qǐng)用空間向量知識(shí)解答下列問題:(1)求線段的長(zhǎng);(2)若為線段上一點(diǎn),且,求平面與平面夾角的余弦值.18.(12分)如圖,四棱錐中,,,,平面.(1)在線段上是否存在一點(diǎn)使得平面?若存在,求出的位置;若不存在,請(qǐng)說明理由;(2)求四棱錐的體積.19.(12分)已知函數(shù)(…是自然對(duì)數(shù)的底數(shù)).(1)求的單調(diào)區(qū)間;(2)求函數(shù)的零點(diǎn)的個(gè)數(shù).20.(12分)已知拋物線上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4.(1)求拋物線E的方程;(2)點(diǎn)A、B為拋物線E上異于原點(diǎn)O的兩不同的點(diǎn),且滿足.若直線AB與橢圓恒有公共點(diǎn),求m的取值范圍.21.(12分)已知直線經(jīng)過點(diǎn),,直線經(jīng)過點(diǎn),且.(1)分別求直線,的方程;(2)設(shè)直線與直線的交點(diǎn)為,求外接圓的方程.22.(10分)如圖,在三棱錐中,平面,,,為的中點(diǎn).(1)證明:平面;(2)求平面與平面所成二面角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由導(dǎo)數(shù)的運(yùn)算法則、復(fù)合函數(shù)的求導(dǎo)法則計(jì)算后可判斷【詳解】A:;B:;C:;D:故選:C2、D【解析】由雙曲線的性質(zhì),直接表示離心率,求.【詳解】由雙曲線方程可知,因?yàn)椋?,解得:,又,所?故選:D【點(diǎn)睛】本題考查雙曲線基本性質(zhì),意在考查數(shù)形結(jié)合分析問題和解決問題能力,屬于中檔題型,一般求雙曲線離心率的方法:

直接法:直接求出,然后利用公式求解;2.公式法:,3.構(gòu)造法:根據(jù)條件,可構(gòu)造出的齊次方程,通過等式兩邊同時(shí)除以,進(jìn)而得到關(guān)于的方程.3、B【解析】對(duì)A,根據(jù)當(dāng)時(shí),的值即可判斷;對(duì)B,根據(jù)函數(shù)在上的單調(diào)性即可判斷;對(duì)C,根據(jù)函數(shù)的奇偶性即可判斷;對(duì)D,根據(jù)函數(shù)在上的單調(diào)性即可判斷.【詳解】解:對(duì)A,當(dāng)時(shí),,故A錯(cuò)誤;對(duì)B,的定義域?yàn)椋?,故為奇函?shù);,當(dāng)時(shí),當(dāng)時(shí),,即,又,,故存在,故在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增,故B正確;對(duì)C,為奇函數(shù),故C錯(cuò)誤;對(duì)D,函數(shù)在上不單調(diào),故D錯(cuò)誤.故選:B.4、D【解析】設(shè)點(diǎn),取,可得,求出的值,利用拋物線的定義可求得的值.【詳解】設(shè)點(diǎn),其中,則,,取,則,可得,因?yàn)?,可得,解得,則,因此,.故選:D.5、C【解析】由題意,借助米勒定理,可設(shè)出坐標(biāo),表示出的外接圓方程,然后在求解點(diǎn)R的縱坐標(biāo).【詳解】因?yàn)辄c(diǎn)P、Q的坐標(biāo)分別是(2,0),(4,0)是x軸正半軸上的兩個(gè)定點(diǎn),點(diǎn)R是y軸正半軸上的一動(dòng)點(diǎn),根據(jù)米勒定理,當(dāng)?shù)耐饨訄A與y軸相切時(shí),最大,由垂徑定理可知,弦的垂直平分線必經(jīng)過的外接圓圓心,所以弦的中點(diǎn)為(3,0),故弦中點(diǎn)的橫坐標(biāo)即為的外接圓半徑,即,由垂徑定理可得,圓心坐標(biāo)為,故的外接圓的方程為,所以點(diǎn)R的縱坐標(biāo)為.故選:C.6、A【解析】求得拋物線的焦點(diǎn)從而求得,再結(jié)合題意求得,即可寫出橢圓方程.【詳解】因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,故可得;又短軸長(zhǎng)為2,故可得,即;故橢圓方程為:.故選:.7、C【解析】求出拋物線的焦點(diǎn),設(shè)出直線方程,代入拋物線方程,運(yùn)用韋達(dá)定理和向量坐標(biāo)表示,解得,即可得出直線的方程.【詳解】解:拋物線的焦點(diǎn),設(shè)直線為,則,整理得,則,.由可得,代入上式即可得,所以,整理得:.故選:C.【點(diǎn)睛】本題考查直線和拋物線的位置關(guān)系,主要考查韋達(dá)定理和向量共線的坐標(biāo)表示,考查運(yùn)算能力,屬于中檔題.8、B【解析】作出線面角構(gòu)造三角形直接求解,建立空間直角坐標(biāo)系用向量法求解.【詳解】設(shè)正方體棱長(zhǎng)為2,、F分別為AB、CD的中點(diǎn),由正方體性質(zhì)知平面,所以平面平面,在平面作,則平面,因?yàn)?,所以即為所求角,所?故選:B9、B【解析】根據(jù)等差數(shù)列的通項(xiàng)公式的基本量運(yùn)算求解【詳解】設(shè)的公差為d,因?yàn)?,所以,又,所以故選:B10、D【解析】由橢圓的定義可以直接求得點(diǎn)到另一焦點(diǎn)的距離.【詳解】設(shè)橢圓的左、右焦點(diǎn)分別為、,由已知條件得,由橢圓定義得,其中,則.故選:.11、A【解析】根據(jù)題意得到泳池維修費(fèi)用的的解析式,再利用導(dǎo)數(shù)求出最值即可【詳解】解:設(shè)泳池維修的總費(fèi)用為元,則由題意得,則,令,解得,當(dāng)時(shí),;當(dāng)時(shí),,故當(dāng)時(shí),有最小值因此,當(dāng)較短池壁為時(shí),泳池的總維修費(fèi)用最低故選A12、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項(xiàng)公式即可求解.【詳解】用表示這個(gè)數(shù)列,依題意,,則,,第四個(gè)數(shù)即.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意求出函數(shù)的導(dǎo)函數(shù)并且通過導(dǎo)數(shù)求出原函數(shù)的單調(diào)區(qū)間,進(jìn)而得到原函數(shù)的極值,因?yàn)楹瘮?shù)僅有一個(gè)零點(diǎn),所以結(jié)合函數(shù)的性質(zhì)可得函數(shù)的極大值小于或極小值大于,即可得到答案.【詳解】解:由題意可得:函數(shù),所以,令,則或,令,則,所以函數(shù)的單調(diào)增區(qū)間為和,減區(qū)間為所以當(dāng)時(shí)函數(shù)有極大值,當(dāng)時(shí)函數(shù)有極小值,,因?yàn)楹瘮?shù)僅有一個(gè)零點(diǎn),,所以或,解得或.所以實(shí)數(shù)的取值范圍是故答案為:14、【解析】由可求得【詳解】因?yàn)?,所以,故答案為:【點(diǎn)睛】本題考查向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題15、【解析】構(gòu)造函數(shù)利用導(dǎo)數(shù)研究單調(diào)性,即可得到答案;【詳解】,令,,單調(diào)遞減,且,,x的取值范圍是,故答案為:16、【解析】判斷出三角形的形狀,求得點(diǎn)坐標(biāo),由此列方程求得,進(jìn)而求得雙曲線的離心率.【詳解】依題意設(shè)雙曲線方程為,雙曲線的漸近線方程為,右焦點(diǎn),不妨設(shè).由于,所以是線段的中點(diǎn),由于,所以是線段的垂直平均分,所以三角形是等腰三角形,則.直線的斜率為,則直線的斜率為,所以直線的方程為,由解得,則,即,化簡(jiǎn)得,所以雙曲線的離心率為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),由已知可得出,求出的值,即可得解;(2)利用空間向量法可求得平面與平面夾角的余弦值.【小問1詳解】解:平面,,以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則、、、,則,,,則,解得,故.【小問2詳解】解:,則,又、、,所以,,,設(shè)為平面的法向量,則,取,可得,顯然,為平面的一個(gè)法向量,,因此,平面與平面夾角的余弦值為.18、(1)存在,為的中點(diǎn),證明見解析;(2).【解析】(1)取的中點(diǎn),的中點(diǎn),連接,,,證明,由線面平行的判定定理即可求證;(2)先證明平面面,過點(diǎn)作于點(diǎn),即可證明面,在中,利用面積公式求出即為四棱錐的高,再由棱錐的體積公式即可求解.【詳解】(1)線段上存在點(diǎn)使得平面,為的中點(diǎn).證明如下:如圖取的中點(diǎn),的中點(diǎn),連接,,,因?yàn)椋謩e為,的中點(diǎn),所以且因?yàn)榍遥?,且,所以四邊形為平行四邊形,可得,因?yàn)槊妫?,所以平面;?)過點(diǎn)作于點(diǎn),因?yàn)槠矫?,面,所以平面面,因?yàn)?,面,平面面,所以面,因?yàn)?,,所以,,所以,即,所以,即為四棱錐的高,所以.19、(1)當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)時(shí)函數(shù)沒有零點(diǎn);或時(shí)函數(shù)有且只有一個(gè)零點(diǎn);時(shí),函數(shù)有兩個(gè)零點(diǎn).【解析】(1)先對(duì)函數(shù)求導(dǎo),然后分和兩種情況判斷導(dǎo)函數(shù)正負(fù),求其單調(diào)區(qū)間;(2)由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,從而可得答案【詳解】(1)因?yàn)?,所以,?dāng)時(shí),恒成立,所以的單調(diào)遞增區(qū)間為,無單調(diào)遞減區(qū)間;當(dāng)時(shí),令,得;令,得,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)顯然0不是函數(shù)的零點(diǎn),由,得.令,則.或時(shí),,時(shí),,所以在和上都是減函數(shù),在上是增函數(shù),時(shí)取極小值,又當(dāng)時(shí),.所以時(shí),關(guān)于的方程無解,或時(shí)關(guān)于的方程只有一個(gè)解,時(shí),關(guān)于的方程有兩個(gè)不同解.因此,時(shí)函數(shù)沒有零點(diǎn),或時(shí)函數(shù)有且只有一個(gè)零點(diǎn),時(shí),函數(shù)有兩個(gè)零點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:此題考查導(dǎo)數(shù)的應(yīng)用,考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查利用導(dǎo)數(shù)判斷函數(shù)的零點(diǎn),解題的關(guān)鍵是由,得,構(gòu)造函數(shù),然后利用導(dǎo)數(shù)求出其單調(diào)區(qū)間和極值,畫出此函數(shù)的圖像,再判斷圖像與直線的交點(diǎn)情況,考查數(shù)形結(jié)合的思想,屬于中檔題20、(1)(2)【解析】(1)由焦半徑公式可得,求解即可得答案;(2)由題意,直線AB斜率不為0,設(shè),,聯(lián)立直線與拋物線的方程,由韋達(dá)定理及可得,從而可得直線AB恒過定點(diǎn),進(jìn)而可得定點(diǎn)在橢圓內(nèi)部或橢圓上即可求解.【小問1詳解】解:因?yàn)閽佄锞€上橫坐標(biāo)為3的點(diǎn)P到焦點(diǎn)F的距離為4,所以,解得,所以拋物線E的方程為;【小問2詳解】解:由題意,直線AB斜率不為0,設(shè),,由,可得,所以,因?yàn)?,即,所以,所以,即,所以,所以直線,所以直線AB恒過定點(diǎn),因?yàn)橹本€AB與橢圓恒有公共點(diǎn),所以定點(diǎn)在橢圓內(nèi)部或橢圓上,即,所以.21、(1);(2).【解析】(1)根據(jù)兩點(diǎn)式即可求出直線l1的方程,根據(jù)直線垂直的關(guān)系即可求l2的方程;(2)先求出C點(diǎn)坐標(biāo),通過三角形的長(zhǎng)度關(guān)系知道三角形是以AC為斜邊長(zhǎng)的直角三角形,故AC的中點(diǎn)即為外心,AC即為直徑.解析:(1)∵直線經(jīng)過點(diǎn),,∴,設(shè)直線的方程為,∴,∴.(2),即:,∴,的中點(diǎn)為,∴的外接圓的圓心為,半徑為,∴外接圓的方程為:.點(diǎn)睛:這個(gè)題目考查的是已知兩直線位置關(guān)系求參的問題,還考查了三角形外接圓的問題.對(duì)于三角形為外接圓,圓心就是各個(gè)邊的中垂線的交點(diǎn),鈍角三角形外心在三角形外側(cè),銳角三角形圓心在三角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論