版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省撫州市臨川區(qū)第二中學2025屆高一上數(shù)學期末學業(yè)水平測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若不等式對一切恒成立,那么實數(shù)的取值范圍是A. B.C. D.2.將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,下列說法正確的是()A.是奇函數(shù) B.的周期是C.的圖象關于直線對稱 D.的圖象關于點對稱3.我國著名數(shù)學家華羅庚曾說:數(shù)缺形時少直觀,形少數(shù)時難人微,數(shù)形結合百般好,割裂分家萬事休.在數(shù)學的學習和研究中,有時可憑借函數(shù)的解析式琢磨函數(shù)圖像的特征.如函數(shù),的圖像大致為()A. B.C. D.4.已知集合A={1,2,3},集合B={x|x2=x},則A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}5.已知,則的大小關系是()A. B.C. D.6.下列函數(shù)中為偶函數(shù)的是()A. B.C. D.7.設,表示兩條直線,,表示兩個平面,則下列命題正確的是A.若,,則 B.若,,則C.若,,則 D.若,,則8.已知全集,集合,集合,則A. B.C. D.9.下列說法不正確的是()A.奇函數(shù)的圖象關于原點對稱,但不一定過原點 B.偶函數(shù)的圖象關于y軸對稱,但不一定和y軸相交C.若偶函數(shù)的圖象與x軸有且僅有兩交點,且橫坐標分別為,則 D.若奇函數(shù)的圖象與y軸相交,交點不一定是原點10.已知集合,
,則(
)A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知奇函數(shù)f(x),當x>0,fx=x212.從2008年京津城際鐵路通車運營開始,高鐵在過去幾年里快速發(fā)展,并在國民經濟和日常生活中扮演著日益重要的角色.下圖是2009年至2016年高鐵運營總里程數(shù)的折線圖圖(圖中的數(shù)據(jù)均是每年12月31日的統(tǒng)計結果).根據(jù)上述信息下列結論中,所有正確結論的序號是____①2015年這一年,高鐵運營里程數(shù)超過0.5萬公里;②2013年到2016年高鐵運營里程平均增長率大于2010到2013高鐵運營里程平均增長率;③從2010年至2016年,新增高鐵運營里程數(shù)最多的一年是2014年;④從2010年至2016年,新增高鐵運營里程數(shù)逐年遞增;13.已知A(3,0),B(0,4),直線AB上一動點P(x,y),則xy的最大值是___.14.已知冪函數(shù)的圖象過點,則___________.15.隨機抽取100名年齡在[10,20),[20,30),…,[50,60)年齡段的市民進行問卷調查,由此得到樣本的頻率分布直方圖如圖所示.從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,則在[50,60)年齡段抽取的人數(shù)為______.16.若扇形的面積為,半徑為1,則扇形的圓心角為___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)寫出函數(shù)單調遞減區(qū)間和其圖象的對稱軸方程;(2)用五點法作圖,填表并作出在圖象.xy18.已知函數(shù)(1)求函數(shù)的單調區(qū)間;(2)求函數(shù)在區(qū)間上的值域19.如圖所示,四棱錐的底面是邊長為1的菱形,,E是CD中點,PA底面ABCD,(I)證明:平面PBE平面PAB;(II)求二面角A—BE—P和的大小20.已知函數(shù)的定義域為,且對一切,,都有,當時,總有.(1)求的值;(2)證明:是定義域上的減函數(shù);(3)若,解不等式.21.求值或化簡:(1);(2).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】由絕對值不等式解法,分類討論去絕對值,再根據(jù)恒成立問題的解法即可求得a的取值范圍【詳解】根據(jù)絕對不等式,分類討論去絕對值,得所以所以所以選D【點睛】本題考查了絕對值不等式化簡方法,恒成立問題的基本應用,屬于基礎題2、D【解析】利用三角函數(shù)圖象變換可得函數(shù)的解析式,然后利用余弦型函數(shù)的基本性質逐項判斷可得出正確選項.【詳解】由題意可得,對于A,函數(shù)是偶函數(shù),A錯誤:對于B,函數(shù)最小周期是,B錯誤;對于C,由,則直線不是函數(shù)圖象的對稱軸,C錯誤;對于D,由,則是函數(shù)圖象的一個對稱中心,D正確.故選:D.3、B【解析】根據(jù)題意求出函數(shù)的定義域并判斷出函數(shù)的奇偶性,再代入特殊值點即可判斷答案.【詳解】由題意,函數(shù)定義域為,,于是排除AD,又,所以C錯誤,B正確.故選:B.4、C【解析】求出集合B={0,1},然后根據(jù)并集的定義求出A∪B【詳解】解:∵集合A={1,2,3},集合B={x|x2=x}={0,1},∴A∪B={0,1,2,3}故選C【點睛】本題考查并集的求法,是基礎題,解題時要認真審題5、B【解析】利用指數(shù)函數(shù)和對數(shù)函數(shù)的性質,三角函數(shù)的性質比較大小即可【詳解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴綜上可知故選:B6、B【解析】利用函數(shù)奇偶性的定義可判斷A、B、C選項中各函數(shù)的奇偶性,利用特殊值法可判斷D選項中函數(shù)的奇偶性.【詳解】對于A選項,令,該函數(shù)的定義域為,,所以,函數(shù)為奇函數(shù);對于B選項,令,該函數(shù)的定義域為,,所以,函數(shù)為偶函數(shù);對于C選項,函數(shù)的定義域為,則函數(shù)為非奇非偶函數(shù);對于D選項,令,則,,且,所以,函數(shù)為非奇非偶函數(shù).故選:B.【點睛】本題考查函數(shù)奇偶性的判斷,考查函數(shù)奇偶性定義的應用,考查推理能力,屬于基礎題.7、D【解析】對選項進行一一判斷,選項D為面面垂直判定定理.【詳解】對A,與可能異面,故A錯;對B,可能在平面內;對C,與平面可能平行,故C錯;對D,面面垂直判定定理,故選D.【點睛】本題考查空間中線、面位置關系,判斷一個命題為假命題,只要能舉出反例即可.8、C【解析】先求出,再和求交集即可.【詳解】因全集,集合,所以,又,所以.故選C【點睛】本題主要考查集合的混合運算,熟記概念即可,屬于基礎題型.9、D【解析】對于AB,舉例判斷,對于CD根據(jù)函數(shù)奇偶性和對稱性的關系分析判斷即可【詳解】對于A,是奇函數(shù),其圖象關于原點對稱,但不過原點,所以A正確,對于B,是偶函數(shù),其圖象關于軸對稱,但與軸不相交,所以B正確,對于C,若偶函數(shù)的圖象與x軸有且僅有兩交點,且橫坐標分別為,則兩個交點關于軸對稱,所以,所以C正確,對于D,若奇函數(shù)與y軸有交點,則,故,所以函數(shù)必過原點,所以D錯誤,故選:D10、D【解析】因,,故,應選答案D二、填空題:本大題共6小題,每小題5分,共30分。11、-10【解析】根據(jù)函數(shù)奇偶性把求f-2的值,轉化成求f2【詳解】由f(x)為奇函數(shù),可知f-x=-f又當x>0,fx=故f故答案為:-1012、②③【解析】根據(jù)數(shù)據(jù)折線圖,分別進行判斷即可.【詳解】①看2014,2015年對應的縱坐標之差小于2-1.5=0.5,故①錯誤;②連線觀察2013年到2016年兩點連線斜率更大,故②正確;③2013年到2014年兩點縱坐標之差最大,故③正確;④看相鄰縱坐標之差是否逐年增加,顯然不是,有增有減,故④錯誤;故答案為:②③.13、3【解析】直線AB的方程為+=1,又∵+≥2,即2≤1,當x>0,y>0時,當且僅當=,即x=,y=2時取等號,∴xy≤3,則xy的最大值是3.14、【解析】由冪函數(shù)的解析式的形式可求出和的值,再將點代入可求的值,即可求解.【詳解】因為是冪函數(shù),所以,,又的圖象過點,所以,解得,所以.故答案為:.15、3【解析】根據(jù)頻率分布直方圖,求得不小于40歲的人的頻率及人數(shù),再利用分層抽樣的方法,即可求解,得到答案【詳解】根據(jù)頻率分布直方圖,得樣本中不小于40歲的人的頻率是0.015×10+0.005×10=0.2,所以不小于40歲的人的頻數(shù)是100×0.2=20;從不小于40歲的人中按年齡段分層抽樣的方法隨機抽取12人,在[50,60)年齡段抽取人數(shù)為【點睛】本題主要考查了頻率分布直方圖的應用,其中解答中熟記頻率分布直方圖的性質,以及頻率分布直方圖中概率的計算方法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題16、【解析】直接根據(jù)扇形的面積公式計算可得答案【詳解】設扇形的圓心角為,因為扇形的面積為,半徑為1,所以.解得,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)遞減區(qū)間,對稱軸方程:;(2)見解析【解析】(1)由正弦型函數(shù)的單調性與對稱性即可求得的單調區(qū)間與對稱軸;(2)根據(jù)五點作圖法規(guī)則補充表格,然后在所給坐標中描出所取五點,以光滑曲線連接即可.【詳解】(1)令,解得,令,解得,所以函數(shù)的遞減區(qū)間為,對稱軸方程:;(2)0xy131-11【點睛】本題考查正弦型函數(shù)的單調性與對稱性,五點法作正(余)弦型函數(shù)的圖像,屬于基礎題.18、(1)增區(qū)間為;減區(qū)間為(2)【解析】(1)利用正弦型函數(shù)的單調性直接求即可.(2)整體代換后利用正弦函數(shù)的性質求值域.【小問1詳解】令,有,令,有,可得函數(shù)的增區(qū)間為;減區(qū)間為;【小問2詳解】當時,,,有,故函數(shù)在區(qū)間上的值域為19、(I)同解析(II)二面角的大小為【解析】解:解法一(I)如圖所示,連結由是菱形且知,是等邊三角形.因為E是CD的中點,所以又所以又因為PA平面ABCD,平面ABCD,所以而因此平面PAB.又平面PBE,所以平面PBE平面PAB.(II)由(I)知,平面PAB,平面PAB,所以又所以是二面角的平面角在中,故二面角的大小為解法二:如圖所示,以A為原點,建立空間直角坐標系則相關各點的坐標分別是:(I)因為平面PAB的一個法向量是所以和共線.從而平面PAB.又因為平面PBE,所以平面PBE平面PAB.(II)易知設是平面PBE的一個法向量,則由得所以故可取而平面ABE的一個法向量是于是,故二面角的大小為20、(1);(2)證明見解析;(3).【解析】(1)令即可求得結果;(2)設,由即可證得結論;(3)將所求不等式化為,結合單調性和定義域的要求即可構造不等式組求得結果.【小問1詳解】令,則,解得:;【小問2詳解】設,則,,,,是定義域上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 八年級英語Myfuture課件
- JJF(陜) 028-2020 數(shù)顯糖量計校準規(guī)范
- 【培訓課件】著作權集體管理之討論
- 加強抗震救災安全保障計劃
- 辦公室消防安全培訓
- 讀書驛站在社區(qū)內搭建臨時圖書館提供服務計劃
- 2024-2025學年年七年級數(shù)學人教版下冊專題整合復習卷28.2 解直角三角形(1)(含答案)-
- 班主任的情緒智力提升計劃
- 斷路器關鍵部件相關項目投資計劃書
- 有效的班級會議組織與實施計劃
- 現(xiàn)代密碼學-楊波-清華大學出版社-課后答案
- 水果削皮機的工業(yè)工程設計論文
- 空壓站設備安裝施工組織設計方案(空壓站設備安裝)
- 肝癌患者的護理疑難病例討論記錄文本
- 四大經典之溫病
- 石化裝置動設備操作規(guī)程
- 海花島(海南儋州)民宿眾籌計劃書
- 注塑件通用技術條件
- 人大代表選舉主持詞_1
- KingSCADA初級教程工程安全和用戶管理
- 消防安裝工程質量通病及防治措施
評論
0/150
提交評論