2025屆甘肅省通渭縣第二中學(xué)數(shù)學(xué)高三上期末檢測試題含解析_第1頁
2025屆甘肅省通渭縣第二中學(xué)數(shù)學(xué)高三上期末檢測試題含解析_第2頁
2025屆甘肅省通渭縣第二中學(xué)數(shù)學(xué)高三上期末檢測試題含解析_第3頁
2025屆甘肅省通渭縣第二中學(xué)數(shù)學(xué)高三上期末檢測試題含解析_第4頁
2025屆甘肅省通渭縣第二中學(xué)數(shù)學(xué)高三上期末檢測試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆甘肅省通渭縣第二中學(xué)數(shù)學(xué)高三上期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對稱;②圖象C關(guān)于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③2.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.3.已知復(fù)數(shù)z,則復(fù)數(shù)z的虛部為()A. B. C.i D.i4.已知為虛數(shù)單位,實數(shù)滿足,則()A.1 B. C. D.5.已知集合,集合,則()A. B. C. D.6.已知Sn為等比數(shù)列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣857.若雙曲線:的一條漸近線方程為,則()A. B. C. D.8.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學(xué)家、數(shù)學(xué)家和物理學(xué)家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發(fā)現(xiàn)“圓柱內(nèi)切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結(jié)論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內(nèi)切球體積為()A. B. C. D.9.設(shè),則(

)A.10 B.11 C.12 D.1310.已知空間兩不同直線、,兩不同平面,,下列命題正確的是()A.若且,則 B.若且,則C.若且,則 D.若不垂直于,且,則不垂直于11.已知全集,集合,,則陰影部分表示的集合是()A. B. C. D.12.已知雙曲線的一個焦點為,點是的一條漸近線上關(guān)于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.14.已知點是拋物線的準(zhǔn)線上一點,F(xiàn)為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F(xiàn)是它的一個焦點,且過P點,當(dāng)m取最小值時,雙曲線C的離心率為______.15.設(shè),則______.16.函數(shù)的定義域為,其圖象如圖所示.函數(shù)是定義域為的奇函數(shù),滿足,且當(dāng)時,.給出下列三個結(jié)論:①;②函數(shù)在內(nèi)有且僅有個零點;③不等式的解集為.其中,正確結(jié)論的序號是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為直角梯形,,,,,在銳角中,E是邊PD上一點,且.(1)求證:平面ACE;(2)當(dāng)PA的長為何值時,AC與平面PCD所成的角為?18.(12分)平面直角坐標(biāo)系中,曲線:.直線經(jīng)過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標(biāo)系.(1)寫出曲線的極坐標(biāo)方程與直線的參數(shù)方程;(2)若直線與曲線相交于,兩點,且,求實數(shù)的值.19.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規(guī)則如下:抽獎?wù)邤S各面標(biāo)有點數(shù)的正方體骰子次,若擲得點數(shù)大于,則可繼續(xù)在抽獎箱中抽獎;否則獲得三等獎,結(jié)束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎?wù)邚南渲腥我饷鰝€球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數(shù)學(xué)期望不超過元,求的最小值.20.(12分)已知橢圓的左頂點為,左、右焦點分別為,離心率為,是橢圓上的一個動點(不與左、右頂點重合),且的周長為6,點關(guān)于原點的對稱點為,直線交于點.(1)求橢圓方程;(2)若直線與橢圓交于另一點,且,求點的坐標(biāo).21.(12分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點,直線與曲線交于、兩點,求.22.(10分)設(shè)數(shù)列是公差不為零的等差數(shù)列,其前項和為,,若,,成等比數(shù)列.(1)求及;(2)設(shè),設(shè)數(shù)列的前項和,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)三角函數(shù)的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結(jié)論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數(shù)的對稱軸、對稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.2、B【解析】

根據(jù)焦點所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設(shè)雙曲線的方程為,一個焦點為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標(biāo)準(zhǔn)方程,易錯點在于漏掉考慮焦點所在坐標(biāo)軸導(dǎo)致方程形式出錯.3、B【解析】

利用復(fù)數(shù)的運算法則、虛部的定義即可得出【詳解】,則復(fù)數(shù)z的虛部為.故選:B.【點睛】本題考查了復(fù)數(shù)的運算法則、虛部的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.4、D【解析】,則故選D.5、D【解析】

可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運算.6、D【解析】

由等比數(shù)列的性質(zhì)求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據(jù)等比數(shù)列的前n項和公式解答即可.【詳解】設(shè)等比數(shù)列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數(shù)列的前n項和,根據(jù)等比數(shù)列建立條件關(guān)系求出公比是解決本題的關(guān)鍵,屬于基礎(chǔ)題.7、A【解析】

根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.8、D【解析】

設(shè)圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結(jié)合題中的結(jié)論即可求出該圓柱的內(nèi)切球體積.【詳解】設(shè)圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內(nèi)切球的體積是圓柱體積的,所以所求圓柱內(nèi)切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關(guān)鍵;屬于中檔題.9、B【解析】

根據(jù)題中給出的分段函數(shù),只要將問題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.10、C【解析】因答案A中的直線可以異面或相交,故不正確;答案B中的直線也成立,故不正確;答案C中的直線可以平移到平面中,所以由面面垂直的判定定理可知兩平面互相垂直,是正確的;答案D中直線也有可能垂直于直線,故不正確.應(yīng)選答案C.11、D【解析】

先求出集合N的補集,再求出集合M與的交集,即為所求陰影部分表示的集合.【詳解】由,,可得或,又所以.故選:D.【點睛】本題考查了韋恩圖表示集合,集合的交集和補集的運算,屬于基礎(chǔ)題.12、B【解析】

由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點睛】本題考查雙曲線的簡單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導(dǎo)數(shù)法求的范圍.【詳解】設(shè),由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【點睛】本題主要考查橢圓,雙曲線的定義和幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.14、【解析】

由點坐標(biāo)可確定拋物線方程,由此得到坐標(biāo)和準(zhǔn)線方程;過作準(zhǔn)線的垂線,垂足為,根據(jù)拋物線定義可得,可知當(dāng)直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標(biāo),根據(jù)雙曲線定義得到實軸長,結(jié)合焦距可求得所求的離心率.【詳解】是拋物線準(zhǔn)線上的一點拋物線方程為,準(zhǔn)線方程為過作準(zhǔn)線的垂線,垂足為,則設(shè)直線的傾斜角為,則當(dāng)取得最小值時,最小,此時直線與拋物線相切設(shè)直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標(biāo)準(zhǔn)方程的應(yīng)用、雙曲線定義的應(yīng)用;關(guān)鍵是能夠確定當(dāng)取得最小值時,直線與拋物線相切,進而根據(jù)拋物線切線方程的求解方法求得點坐標(biāo).15、121【解析】

在所給的等式中令,,令,可得2個等式,再根據(jù)所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點睛】本題主要考查二項式定理的應(yīng)用,考查學(xué)生分析問題的能力,屬于基礎(chǔ)題,難度較易.16、①③【解析】

利用奇函數(shù)和,得出函數(shù)的周期為,由圖可直接判斷①;利用賦值法求得,結(jié)合,進而可判斷函數(shù)在內(nèi)的零點個數(shù),可判斷②的正誤;采用換元法,結(jié)合圖象即可得解,可判斷③的正誤.綜合可得出結(jié)論.【詳解】因為函數(shù)是奇函數(shù),所以,又,所以,即,所以,函數(shù)的周期為.對于①,由于函數(shù)是上的奇函數(shù),所以,,故①正確;對于②,,令,可得,得,所以,函數(shù)在區(qū)間上的零點為和.因為函數(shù)的周期為,所以函數(shù)在內(nèi)有個零點,分別是、、、、,故②錯誤;對于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點睛】本題考查函數(shù)的圖象與性質(zhì),涉及奇偶性、周期性和零點等知識點,考查學(xué)生分析問題的能力和數(shù)形結(jié)合能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)當(dāng)時,AC與平面PCD所成的角為.【解析】

(1)連接交于,由相似三角形可得,結(jié)合得出,故而平面;(2)過作,可證平面,根據(jù)計算,得出的大小,再計算的長.【詳解】(1)證明:連接BD交AC于點O,連接OE,,,又平面ACE,平面ACE,平面ACE.(2),,平面PAD作,F(xiàn)為垂足,連接CF平面PAD,平面PAD.,有,,平面就是AC與平面PCD所成的角,,,,,,時,AC與平面PCD所成的角為.【點睛】本題考查了線面平行的判定,線面垂直的判定與線面角的計算,屬于中檔題.18、(Ⅰ)(t為參數(shù));(Ⅱ)或或.【解析】

試題分析:本題主要考查極坐標(biāo)方程、參數(shù)方程與直角方程的相互轉(zhuǎn)化、直線與拋物線的位置關(guān)系等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,用,化簡表達式,得到曲線的極坐標(biāo)方程,由已知點和傾斜角得到直線的參數(shù)方程;第二問,直線方程與曲線方程聯(lián)立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:1.極坐標(biāo)方程,參數(shù)方程與直角方程的相互轉(zhuǎn)化;2.直線與拋物線的位置關(guān)系.19、;.【解析】

設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應(yīng)求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設(shè)顧客獲得三等獎為事件,因為顧客擲得點數(shù)大于的概率為,顧客擲得點數(shù)小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數(shù)學(xué)期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于??碱}.20、(1);(2)或【解析】

(1)根據(jù)的周長為,結(jié)合離心率,求出,即可求出方程;(2)設(shè),則,求出直線方程,若斜率不存在,求出坐標(biāo),直接驗證是否滿足題意,若斜率存在,求出其方程,與直線方程聯(lián)立,求出點坐標(biāo),根據(jù)和三點共線,將點坐標(biāo)用表示,坐標(biāo)代入橢圓方程,即可求解.【詳解】(1)因為橢圓的離心率為,的周長為6,設(shè)橢圓的焦距為,則解得,,,所以橢圓方程為.(2)設(shè),則,且,所以的方程為①.若,則的方程為②,由對稱性不妨令點在軸上方,則,,聯(lián)立①,②

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論