沈陽市重點中學2025屆高二上數(shù)學期末達標檢測試題含解析_第1頁
沈陽市重點中學2025屆高二上數(shù)學期末達標檢測試題含解析_第2頁
沈陽市重點中學2025屆高二上數(shù)學期末達標檢測試題含解析_第3頁
沈陽市重點中學2025屆高二上數(shù)學期末達標檢測試題含解析_第4頁
沈陽市重點中學2025屆高二上數(shù)學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

沈陽市重點中學2025屆高二上數(shù)學期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù)成等比數(shù)列,則圓錐曲線的離心率為()A. B.2C.或2 D.或2.已知動直線的傾斜角的取值范圍是,則實數(shù)m的取值范圍是()A. B.C. D.3.在等差數(shù)列中,若,則的值為()A. B.C. D.4.執(zhí)行如圖所示的程序框圖,則輸出S的值是()A. B.C. D.5.設異面直線、的方向向量分別為,,則異面直線與所成角的大小為()A. B.C. D.6.命題“存在,”的否定是()A.存在, B.存在,C.對任意, D.對任意,7.在等比數(shù)列中,,公比,則()A. B.6C. D.28.設是等比數(shù)列,則“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.若函數(shù)在上為單調(diào)增函數(shù),則m的取值范圍()A. B.C. D.10.已知命題對任意,總有;是方程的根則下列命題為真命題的是A. B.C. D.11.用數(shù)學歸納法證明時,第一步應驗證不等式()A. B.C. D.12.如圖,在平行六面體中,底面是邊長為的正方形,若,且,則的長為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點F為,過點F的直線交該拋物線的準線于點A,與該拋物線的一個交點為B,且,則______14.已知圓C,直線l:,若圓C上恰有四個點到直線l的距離都等于1.則b的取值范圍為___.15.以正方體的對角線的交點為坐標原點O建立右手系的空間直角坐標系,其中,,,則點的坐標為______16.已知某農(nóng)場某植物高度,且,如果這個農(nóng)場有這種植物10000棵,試估計該農(nóng)場這種植物高度在區(qū)間上的棵數(shù)為______.參考數(shù)據(jù):若,則,,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐的底面是正方形,平面平面,E為的中點(1)若,證明:;(2)求直線與平面所成角的余弦值的取值范圍18.(12分)已知函數(shù),.(1)當時,求曲線在點處的切線方程;(2)若在區(qū)間上有唯一的零點.(ⅰ)求的取值范圍;(ⅱ)證明:.19.(12分)為了解某城中村居民收入情況,小明利用周末時間對該地在崗居民月收入進行了抽樣調(diào)查,并將調(diào)查數(shù)據(jù)整理得到如下頻率分布直方圖:根據(jù)直方圖估算:(1)在該地隨機調(diào)查一位在崗居民,該居民收入在區(qū)間內(nèi)的概率;(2)該地區(qū)在崗居民月收入的平均數(shù)和中位數(shù);20.(12分)閱讀本題后面有待完善的問題,在下列三個條件:①,②,③中選擇一個作為條件,補充在題中橫線處,使問題完善,并解答你構造的問題.(如果選擇多個關系并分別解答,在不出現(xiàn)邏輯混亂的情況下,按照第一個解答給分).問題:已知命題,,命題___________,若是的充分不必要條件,求實數(shù)的取值范圍.21.(12分)如圖,已知圓臺下底面圓的直徑為,是圓上異于、的點,是圓臺上底面圓上的點,且平面平面,,,、分別是、的中點.(1)證明:平面;(2)若直線上平面且過點,試問直線上是否存在點,使直線與平面所成的角和平面與平面的夾角相等?若存在,求出點的所有可能位置;若不存在,請說明理由.22.(10分)在四棱錐中,底面是邊長為2的菱形,平面,,是的中點.(1)若為線段的中點,證明:平面;(2)線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求的長,若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)成等比數(shù)列求得,再根據(jù)離心率計算公式即可求得結果.【詳解】因為實數(shù)成等比數(shù)列,故可得,解得或;當時,表示焦點在軸上的橢圓,此時;當時,表示焦點在軸上的雙曲線,此時.故選:C.2、B【解析】根據(jù)傾斜角與斜率的關系可得,即可求m的范圍.【詳解】由題設知:直線斜率范圍為,即,可得.故選:B.3、C【解析】利用等差數(shù)列性質(zhì)可求得,由可求得結果.【詳解】由等差數(shù)列性質(zhì)知:,,解得:;又,.故選:C.4、C【解析】按照程序框圖的流程進行計算.【詳解】,故輸出S的值為.故選:C5、C【解析】利用空間向量夾角的公式直接求解.【詳解】,,,.由異面直線所成角的范圍為,故異面直線與所成的角為.故選:C6、D【解析】特稱命題的否定:將存在改任意并否定原結論,即可知正確答案.【詳解】由特稱命題的否定為全稱命題,知:原命題的否定為:對任意,.故選:D7、D【解析】利用等比數(shù)列的通項公式求解【詳解】由等比數(shù)列的通項公式得:.故選:D8、C【解析】根據(jù)嚴格遞增數(shù)列定義可判斷必要性,分類討論可判斷充分性.【詳解】若是嚴格遞增數(shù)列,顯然,所以“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”必要條件;對任意的正整數(shù)n都成立,所以中不可能同時含正項和負項,,即,或,即,當時,有,即,是嚴格遞增數(shù)列,當時,有,即,是嚴格遞增數(shù)列,所以“對于任意的正整數(shù)n,都有”是“是嚴格遞增數(shù)列”充分條件故選:C9、B【解析】用函數(shù)單調(diào)性確定參數(shù),使用參數(shù)分離法即可.【詳解】,在上是增函數(shù),即恒成立,;設,;∴時,是增函數(shù);時,是減函數(shù);故時,,∴;故選:B.10、A【解析】由絕對值的意義可知命題p為真命題;由于,所以命題q為假命題;因此為假命題,為真命題,“且”字聯(lián)結的命題只有當兩命題都真時才是真命題,所以答案選A11、B【解析】取即可得到第一步應驗證不等式.【詳解】由題意得,當時,不等式為故選:B12、D【解析】由向量線性運算得,利用數(shù)量積的定義和運算律可求得,由此可求得.【詳解】由題意得:,,且,又,,,,.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】作垂直于準線,垂足為,準線與軸交于點,根據(jù)已知條件,利用幾何方法,結合拋物線的定義得到答案.【詳解】拋物線的焦點坐標,準線方程,作垂直于準線于,準線與軸交于點,則,∴.∵,∴,由拋物線的定義得,∴.故答案為:.14、【解析】根據(jù)圓的幾何性質(zhì),結合點到直線距離公式進行求解即可.【詳解】圓C:的半徑為3,圓心坐標為:設圓心到直線l:的距離為,要想圓C上恰有四個點到直線l的距離都等于1,只需,即,所以.故答案為:.15、【解析】根據(jù)已知點的坐標,確定出坐標系即可得【詳解】如圖,由已知得坐標系如圖所示,軸過正方形的對角線交點,軸過中點,軸過中點,因此可知坐標為故答案為:16、1359【解析】由已知求得,則,結合已知求得,乘以10000得答案【詳解】解:由,得,又,,則,估計該農(nóng)場這種植物高度在區(qū)間,上的棵數(shù)為故答案為:1359三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)取的中點F,連接.先證明,,即證平面,原題即得證;(2)分別取的中點G,H,連接,證明為直線與平面所成的角,設正方形的邊長為1,,在中,,即得解.【小問1詳解】解:取的中點F,連接因為,則為正三角形,所以因為平面平面,則平面因為平面,則.①因為四邊形為正方形,E為的中點,則,所以,從而,所以.②又平面,結合①②知,平面,所以【小問2詳解】解:分別取的中點G,H,則,又,,則,所以四邊形為平行四邊形,從而.因為,則因為平面平面,,則平面,從而,因為平面,所以平面,從而平面連接,則為直線與平面所成的角.設正方形的邊長為1,,則從而,.在中,因為當時,單調(diào)遞增,則,所以直線與平面所成角的余弦值的取值范圍是.18、(1);(2)(?。?;(ⅱ)證明見解析.【解析】(1)求出,,利用導數(shù)的幾何意義即可求得切線方程;(2)(?。└鶕?jù)題意對參數(shù)分類討論,當時,等價轉(zhuǎn)化,且構造函數(shù),利用零點存在定理,即可求得參數(shù)的取值范圍;(ⅱ)根據(jù)(?。┲兴蟮玫脚c的等量關系,求得并構造函數(shù),利用導數(shù)研究其單調(diào)性和最值,則問題得證.【小問1詳解】當時,,則,故,,則曲線在點處的切線方程為.【小問2詳解】(?。┮驗椋士傻?,因為,則當時,,則,無零點,不滿足題意;當時,若在有一個零點,即在有一個零點,也即在有一個零點,又,則單調(diào)遞增,則只需,解得.綜上所述,若在區(qū)間上有唯一的零點,則;(ⅱ)由(?。┛芍粼趨^(qū)間上有唯一的零點,則,也即,則,令,則,又在都是單調(diào)增函數(shù),故是單調(diào)增函數(shù),又,故,則在單調(diào)遞增,則,故,即證.【點睛】本題考查導數(shù)的幾何意義,利用導數(shù)研究函數(shù)的零點以及最值;處理問題的關鍵是合理轉(zhuǎn)化函數(shù)零點問題,以及充分利用零點存在定理,熟練掌握構造函數(shù)法,屬綜合困難題.19、(1)(2)平均數(shù)為;中位數(shù)為.【解析】(1)直接根據(jù)概率和為1計算得到答案.(2)根據(jù)平均數(shù)和中位數(shù)的定義直接計算得到答案.【小問1詳解】該居民收入在區(qū)間內(nèi)的概率為:【小問2詳解】居民月收入的平均數(shù)為:.第一組概率為,第二組概率為,第三組概率為,設居民月收入的中位數(shù)為,則,解得.20、【解析】分別在、和的情況下得命題對應的集合;選條件后可求得命題對應的集合;根據(jù)充分不必要條件的定義可知,分別在、和的情況下得到結果.【詳解】由得:,當時,不等式解集;當時,不等式解集為;當時,不等式解集為;是的充分不必要條件,命題對應集合是命題對應集合的真子集,即;若選條件①:由得:,;若選條件②:由得:,解得:,;若選條件③:由得:,解得:,;當時,,符合題意;當時,由知:,;當時,由知:,;綜上所述:,即實數(shù)的取值范圍為.21、(1)證明見解析;(2)存在,點與點重合.【解析】(1)證明出,利用面面垂直的性質(zhì)可證得結論成立;(2)以為坐標原點,為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標系,易知軸在平面內(nèi),分析可知,設點,利用空間向量法結合同角三角函數(shù)的基本關系可得出關于的方程,解出的值,即可得出結論.【小問1詳解】證明:因為為圓的一條直徑,且是圓上異于、的點,故,又因平面平面,平面平面,平面,所以平面.【小問2詳解】解:存在,理由如下:如圖,以為坐標原點,為軸,為軸,過垂直于平面的直線為軸,建立空間直角坐標系,易知軸在平面內(nèi),則,,,,,,由直線平面且過點,以及平面,得,設,則,,,設平面的法向量為,則則,即,取,得,易知平面的法向量,設直線與平面所成的角為,平面與平面的夾角為,則,,由,得,即,解得,所以當點與點重合時,直線與平面所成的角和平面與平面的夾角相等.22、(1)證明見解析;(2)存在點,且的長為,理由見解析.【解析】(1)取的中點為,連接,得到,結合面面平行的判定定理證得平面平面,進而得到平面;(2)以為原點,所在的直線分別為軸、軸,以垂直平面的直線為軸,建立空間直角坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論