版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
安徽省肥東縣圣泉中學(xué)2025屆高一上數(shù)學(xué)期末質(zhì)量檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,已知正方體中,異面直線與所成的角的大小是A.B.C.D.2.若,,則的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限3.函數(shù)的圖像為()A. B.C. D.4.下列函數(shù)中,在其定義域內(nèi)單調(diào)遞減的是()A. B.C. D.5.直線與直線互相垂直,則這兩條直線的交點坐標(biāo)為()A. B.C. D.6.三個數(shù)20.3,0.32,log0.32的大小順序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.37.已知函數(shù)則函數(shù)值域是()A. B.C. D.8.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積為()A. B.C. D.9.已知函數(shù)是上的奇函數(shù),且對任意實數(shù)、當(dāng)時,都有.如果存在實數(shù),使得不等式成立,則實數(shù)的取值范圍是A. B.C. D.10.若函數(shù)()在有最大值無最小值,則的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.=_______.12.集合的子集個數(shù)為______13.如圖,在四棱錐中,平面平面,是邊長為4的等邊三角形,四邊形是等腰梯形,,則四棱錐外接球的表面積是____________.14.若,則的最小值為__________.15.某次學(xué)科測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.則參加測試的總?cè)藬?shù)為______,分?jǐn)?shù)在之間的人數(shù)為______.16.設(shè)向量不平行,向量與平行,則實數(shù)_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.若實數(shù),,滿足,則稱比遠(yuǎn)離.(1)若比遠(yuǎn)離,求實數(shù)的取值范圍;(2)若,,試問:與哪一個更遠(yuǎn)離,并說明理由.18.已知函數(shù)是定義在R上的奇函數(shù),當(dāng)時,.(1)求函數(shù)在上的解析式;(2)求不等式解集.19.已知圓過,,且圓心在直線上(1)求此圓的方程(2)求與直線垂直且與圓相切的直線方程(3)若點為圓上任意點,求的面積的最大值20.某地為踐提出的“綠水青山就是金山銀山”的理念,大力開展植樹造林.假設(shè)一片森林原來的面積為a畝,計劃每年種植一些樹苗,使森林面積的年平均增長率為20%,且x年后森林的面積為y畝(1)列出y與x的函數(shù)解析式并寫出函數(shù)的定義域;(2)為使森林面積至少達到6a畝至少需要植樹造林多少年?參考數(shù)據(jù):21.(1)若正數(shù)a,b滿足,求的最小值,并求出對應(yīng)的a,b的值;(2)若正數(shù)x,y滿足,求的取值范圍
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】在正方體中,利用線面垂直的判定定理,證得平面,由此能求出結(jié)果【詳解】如圖所示,在正方體中,連結(jié),則,,由線面垂直的判定定理得平面,所以,所以異面直線與所成的角的大小是故選C本題主要考查了直線與平面垂直判定與證明,以及異面直線所成角的求解,其中解答中牢記異面直線所成的求解方法和轉(zhuǎn)化思想的應(yīng)用是解答的關(guān)鍵,平時注意空間思維能力的培養(yǎng),著重考查了推理與論證能力,屬于基礎(chǔ)題2、D【解析】根據(jù)同角三角函數(shù)關(guān)系式,化簡,結(jié)合三角函數(shù)在各象限的符號,即可判斷的終邊所在的象限.【詳解】根據(jù)同角三角函數(shù)關(guān)系式而所以故的終邊在第四象限故選:D【點睛】本題考查了根據(jù)三角函數(shù)符號判斷角所在的象限,屬于基礎(chǔ)題.3、B【解析】首先判斷函數(shù)的奇偶性,再根據(jù)函數(shù)值的特征,利用排除法判斷可得;【詳解】解:因為,定義域為,且,故函數(shù)為偶函數(shù),函數(shù)圖象關(guān)于軸對稱,故排除A、D,當(dāng)時,,所以,故排除C,故選:B4、B【解析】根據(jù)函數(shù)的單調(diào)性確定正確選項【詳解】在上遞增,不符合題意.在上遞減,符合題意.在上有增有減,不符合題意.故選:B5、B【解析】時,直線分別化為:,此時兩條直線不垂直.時,利用兩條直線垂直可得:,解得.聯(lián)立方程解出即可得出.【詳解】時,直線分別化為:,此時兩條直線不垂直.時,由兩條直線垂直可得:,解得.綜上可得:.聯(lián)立,解得,.∴這兩條直線的交點坐標(biāo)為.故選:【點睛】本題考查了直線相互垂直、分類討論方法、方程的解法,考查了推理能力與計算能力,屬于基礎(chǔ)題.6、D【解析】由已知得:,,,所以.故選D.考點:指數(shù)函數(shù)和對數(shù)函數(shù)的圖像和性質(zhì).7、B【解析】結(jié)合分段函數(shù)的單調(diào)性來求得的值域.【詳解】當(dāng)吋,單調(diào)遞增,值域為;當(dāng)時,單調(diào)遞增,值域為,故函數(shù)值域為.故選:B8、A【解析】正四棱錐P-ABCD的外接球的球心在它的高上,記為O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面積,故選A.考點:球的體積和表面積9、A【解析】∵f(x)是R上的奇函數(shù),∴,不妨設(shè)a>b,∴a﹣b>0,∴f(a)﹣f(b)>0,即f(a)>f(b)∴f(x)在R上單調(diào)遞增,∵f(x)為奇函數(shù),∴f(x﹣c)+f(x﹣c2)>0等價于f(x﹣c)>f(c2﹣x)∴不等式等價于x﹣c>c2﹣x,即c2+c<2x,∵存在實數(shù)使得不等式c2+c<2x成立,∴c2+c<6,即c2+c﹣6<0,解得,,故選A點睛:處理抽象不等式的常規(guī)方法:利用單調(diào)性及奇偶性,把函數(shù)值間的不等關(guān)系轉(zhuǎn)化為具體的自變量間的關(guān)系;同時注意區(qū)分恒成立問題與存在性問題.10、B【解析】求出,根據(jù)題意結(jié)合正弦函數(shù)圖象可得答案.【詳解】∵,∴,根據(jù)題意結(jié)合正弦函數(shù)圖象可得,解得.故選:B.二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】利用對數(shù)的運算法則進行求解.【詳解】.故答案為:.12、32【解析】由n個元素組成的集合,集合的子集個數(shù)為個.【詳解】解:由題意得,則A的子集個數(shù)為故答案為:32.13、##【解析】先根據(jù)面面垂直,取△的外接圓圓心G,梯形的外接圓圓心F,分別過兩點作對應(yīng)平面的垂線,找到交點為外接球球心,再通過邊長關(guān)系計算半徑,代入球的表面積公式即得結(jié)果.【詳解】如圖,取的中點,的中點,連,,在上取點,使得,由是邊長為4的等邊三角形,四邊形是等腰梯形,,可得,,即梯形的外接圓圓心為F,分別過點、作平面、平面的垂線,兩垂線相交于點,顯然點為四棱錐外接球的球心,由題可得,,,則四棱錐外接球的半徑,故四棱錐外接球的表面積為故答案為:.14、【解析】整理代數(shù)式滿足運用基本不等式結(jié)構(gòu)后,用基本不等式求最小值.【詳解】∵∴當(dāng)且僅當(dāng),時,取最小值.故答案為:【點睛】用基本不等式求最值要注意“一正、二定、三相等”,若不能取等,則要改變求最值的方法.15、①.25②.4【解析】根據(jù)條件所給的莖葉圖看出分?jǐn)?shù)在[50,60)之間的頻數(shù),由頻率分布直方圖看出分?jǐn)?shù)在[50,60)之間的頻率和[90,100)之間的頻率一樣,繼而得到參加測試的總?cè)藬?shù)及分?jǐn)?shù)在[80,90)之間的人數(shù).【詳解】成績在[50,60)內(nèi)的頻數(shù)為2,由頻率分布直方圖可以看出,成績在[90,100]內(nèi)同樣有2人,由,解得n=25,成績在[80,90)之間的人數(shù)為25-(2+7+10+2)=4人,所以參加測試人數(shù)n=25,分?jǐn)?shù)在[80,90)的人數(shù)為4人.故答案為:25;4【點睛】本題主要考查莖葉圖、頻率分布直方圖,樣本的頻率分布估計總體的分布,屬于容易題.16、-2【解析】因為向量與平行,所以存在,使,所以,解得答案:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)比更遠(yuǎn)離,理由見解析.【解析】(1)由絕對值的幾何意義可得,即可求的取值范圍;(2)只需比較大小,討論、分別判斷代數(shù)式的大小關(guān)系,即知與哪一個更遠(yuǎn)離.【小問1詳解】由比遠(yuǎn)離,則,即.∴或,得:或.∴的取值范圍是.【小問2詳解】因為,有,因為,所以從而,①當(dāng)時,,即;②當(dāng)時,,又,則∴,即綜上,,即比更遠(yuǎn)離18、(1)(2)【解析】(1)根據(jù)奇函數(shù)的知識求得函數(shù)在上的解析式.(2)結(jié)合函數(shù)的單調(diào)性、奇偶性求得不等式的解集.小問1詳解】當(dāng)時,,.所以函數(shù)在上的解析式為.【小問2詳解】當(dāng)時,為增函數(shù),所以在上為增函數(shù).由得,所以,所以,所以不等式的解集為.19、(1)(2)或(3)【解析】(1)一般利用待定系數(shù)法,先求出圓心的坐標(biāo),再求出圓的半徑,即得圓的方程.(2)先設(shè)出直線的方程,再利用直線和圓相切求出其中的待定系數(shù).(3)一般利用數(shù)形結(jié)合分析解答.當(dāng)三角形的高是d+r時,三角形的面積最大.【詳解】(1)易知中點為,,∴的垂直平分線方程為,即,聯(lián)立,解得則,∴圓的方程為(2)知該直線斜率為,不妨設(shè)該直線方程為,由題意有,解得∴該直線方程為或(3),即,圓心到的距離∴點睛:本題的難點在第(3)問方法的選擇,選擇數(shù)形結(jié)合分析解答比較方便.數(shù)形結(jié)合是高中數(shù)學(xué)里一種重要的數(shù)學(xué)思想,在解題中要靈活運用.20、(1)(且);(2)10.【解析】(1)直接由題意可得與的函數(shù)解析式;(2)設(shè)為使森林面積至少達到畝,至少需要植樹造林年,則,求解指數(shù)不等式得答案【小問1詳解】森林原來的面積為畝,森林面積的年平均增長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《翡翠培訓(xùn)資料》課件
- 《證券買賣技巧教案》課件
- 《證券基金銷售培訓(xùn)》課件
- 單位管理制度集粹匯編員工管理篇
- 單位管理制度分享大全【人力資源管理篇】
- 《社區(qū)工作實務(wù)》課件
- 單位管理制度范例選集【人力資源管理篇】十篇
- 單位管理制度范例合集職工管理十篇
- 單位管理制度呈現(xiàn)合集【人事管理】十篇
- 寒假自習(xí)課 25春初中地理八年級下冊人教版教學(xué)課件 第八章 第二節(jié) 干旱的寶地-塔里木盆地 第2課時 油氣資源的開發(fā)
- 老年病及老年綜合征中醫(yī)證治概要
- 三年級上冊數(shù)學(xué)說課稿- 2.2 看一看(二)-北師大版
- 超星爾雅學(xué)習(xí)通《西廂記》賞析(首都師范大學(xué))網(wǎng)課章節(jié)測試答案
- 切削液的配方
- 塑料門窗及型材功能結(jié)構(gòu)尺寸
- 2023-2024學(xué)年湖南省懷化市小學(xué)數(shù)學(xué)五年級上冊期末深度自測試卷
- GB 7101-2022食品安全國家標(biāo)準(zhǔn)飲料
- 超實用的發(fā)聲訓(xùn)練方法
- 《第六課 從傳統(tǒng)到現(xiàn)代課件》高中美術(shù)湘美版美術(shù)鑒賞
- 英語四六級講座課件
- Unit 3 On the move Understanding ideas(Running into a better life)課件- 高一上學(xué)期英語外研版(2019)必修第二冊
評論
0/150
提交評論