版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省黃岡市黃梅縣第二中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)水平測試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是等軸雙曲線形拱橋,現(xiàn)拱頂距離水面6米,水面寬米,若水面下降6米,則水面寬()A.米 B.米C.米 D.米2.已知為原點,點,以為直徑的圓的方程為()A. B.C. D.3.若:,:,則為q的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分又不必要條件4.設(shè)函數(shù)的導(dǎo)函數(shù)是,若,則()A. B.C. D.5.某班對期中成績進(jìn)行分析,利用隨機(jī)數(shù)表法抽取樣本時,先將60個同學(xué)的成績按01,02,03,……,60進(jìn)行編號,然后從隨機(jī)數(shù)表第9行第5列的數(shù)1開始向右讀,則選出的第6個個體是()(注:如下為隨機(jī)數(shù)表的第8行和第9行)6301637859169555671998105071751286735833211234297864560782524507443815510013A.07 B.25C.42 D.526.設(shè)變量滿足約束條件:,則的最小值()A. B.C. D.7.已知三個觀測點,在的正北方向,相距,在的正東方向,相距.在某次爆炸點定位測試中,兩個觀測點同時聽到爆炸聲,觀測點晚聽到,已知聲速為,則爆炸點與觀測點的距離是()A. B.C. D.8.已知直線與橢圓:()相交于,兩點,且線段的中點在直線:上,則橢圓的離心率為()A. B.C. D.9.已知數(shù)列的通項公式為,則“”是“數(shù)列為單調(diào)遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.在平面內(nèi),A,B是兩個定點,C是動點,若,則點C的軌跡為()A.圓 B.橢圓C.拋物線 D.直線11.命題“存在,使得”的否定為()A.存在, B.對任意,C.對任意, D.對任意,12.與的等差中項是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.兩個人射擊,互相獨立.已知甲射擊一次中靶概率是0.6,乙射擊一次中靶概率是0.3,現(xiàn)在兩人各射擊一次,中靶至少一次就算完成目標(biāo),則完成目標(biāo)的概率為_____________14.已知函數(shù),是其導(dǎo)函數(shù),若曲線的一條切線為直線:,則的最小值為___________.15.雙曲線的焦點在圓上,圓O與雙曲線C的漸近線在第一、四象限分別交于P,Q兩點滿足(其中O是坐標(biāo)原點),則的面積是_________16.中國的西氣東輸工程把西部地區(qū)的資源優(yōu)勢變?yōu)榻?jīng)濟(jì)優(yōu)勢,實現(xiàn)了天然氣能源需求與供給的東西部銜接,工程建設(shè)也加快了西部及沿線地區(qū)的經(jīng)濟(jì)發(fā)展.輸氣管道工程建設(shè)中,某段管道鋪設(shè)要經(jīng)過一處峽谷,峽谷內(nèi)恰好有一處直角拐角,水平橫向移動輸氣管經(jīng)過此拐角,從寬為的峽谷拐入寬為的峽谷,如圖所示,位于峽谷懸崖壁上兩點,的連線恰好經(jīng)過拐角內(nèi)側(cè)頂點(點,,在同一水平面內(nèi)),設(shè)與較寬側(cè)峽谷懸崖壁所成的角為,則的長為______(用表示).要使輸氣管順利通過拐角,其長度不能低于______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M為PC上一點,且PM=2MC.(1)求證:BM∥平面PAD;(2)若AD=2,PD=3,∠BAD=60°,求三棱錐P-ADM的體積18.(12分)直線經(jīng)過兩直線和的交點(1)若直線與直線平行,求直線的方程;(2)若點到直線的距離為,求直線的方程19.(12分)如圖,矩形和菱形所在的平面相互垂直,,為的中點.(1)求證:平面;(2)若,求二面角的余弦值.20.(12分)已知是等差數(shù)列,是各項都為正數(shù)的等比數(shù)列,,再從①;②;③這三個條件中選擇___________,___________兩個作為已知.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.21.(12分)已知拋物線C:的焦點為F,為拋物線C上一點,且(1)求拋物線C的方程:(2)若以點為圓心,為半徑的圓與C的準(zhǔn)線交于A,B兩點,過A,B分別作準(zhǔn)線的垂線交拋物線C于D,E兩點,若,證明直線DE過定點22.(10分)如圖1,在邊長為2的菱形ABCD中,∠BAD=60°,將△BCD沿對角線BD折起到△BDC′的位置,如圖2所示,并使得平面BDC′⊥平面ABD,E是BD的中點,F(xiàn)A⊥平面ABD,且FA=.圖1圖2(1)求平面FBC′與平面FBA夾角的余弦值;(2)在線段AD上是否存在一點M,使得⊥平面?若存在,求的值;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,求出雙曲線方程,數(shù)形結(jié)合即可求解.【詳解】如圖所示,以雙曲線的對稱中心為原點,焦點所在對稱軸為y軸建立直角坐標(biāo)系,設(shè)雙曲線標(biāo)準(zhǔn)方程為:(a>0),則頂點,,將A點代入雙曲線方程得,,當(dāng)水面下降6米后,,代入雙曲線方程得,,∴水面寬:米.故選:B.2、A【解析】求圓的圓心和半徑,根據(jù)圓的標(biāo)準(zhǔn)方程即可求解﹒【詳解】由題知圓心為,半徑,∴圓方程為﹒故選:A﹒3、D【解析】根據(jù)充分條件和必要條件的定義即可得出答案.【詳解】解:因為:,:,所以,所以為q的既不充分又不必要條件.故選:D.4、A【解析】求導(dǎo)后,令,可求得,再令可求得結(jié)果.【詳解】因為,所以,所以,所以,所以,所以.故選:A【點睛】本題考查了導(dǎo)數(shù)的計算,考查了求導(dǎo)函數(shù)值,屬于基礎(chǔ)題.5、D【解析】從指定位置起依次讀兩位數(shù)碼,超出編號的數(shù)刪除.【詳解】根據(jù)題意,從隨機(jī)數(shù)表第9行第5列的數(shù)1開始向右讀,依次選出的號碼數(shù)是:12,34,29,56,07,52;所以第6個個體是52.故選:D.6、D【解析】如圖作出可行域,知可行域的頂點是A(-2,2)、B()及C(-2,-2),平移,當(dāng)經(jīng)過A時,的最小值為-8,故選D.7、D【解析】根據(jù)題意作出示意圖,然后結(jié)合余弦定理解三角形即可求出結(jié)果.【詳解】設(shè)爆炸點為,由于兩個觀測點同時聽到爆炸聲,則點位于的垂直平分線上,又在的正東方向且觀測點晚聽到,則點位于的左側(cè),,,,設(shè),則,解得,則爆炸點與觀測點的距離為,故選:D.8、A【解析】將直線代入橢圓方程整理得關(guān)于的方程,運用韋達(dá)定理,求出中點坐標(biāo),再由條件得到,再由,,的關(guān)系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設(shè),,,,則,即中點的橫坐標(biāo)是,縱坐標(biāo)是,由于線段的中點在直線上,則,又,則,,即橢圓的離心率為.故選:A9、A【解析】根據(jù)充分條件和必要條件的定義,結(jié)合數(shù)列的單調(diào)性判斷【詳解】根據(jù)題意,已知數(shù)列的通項公式為,若數(shù)列為單調(diào)遞增數(shù)列,則有(),所以,因為,所以,所以當(dāng)時,數(shù)列為單調(diào)遞增數(shù)列,而當(dāng)數(shù)列為單調(diào)遞增數(shù)列時,不一定成立,所以“”是“數(shù)列為單調(diào)遞增數(shù)列”的充分而不必要條件,故選:A10、A【解析】首先建立平面直角坐標(biāo)系,然后結(jié)合數(shù)量積定義求解其軌跡方程即可.【詳解】設(shè),以AB中點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則:,設(shè),可得:,從而:,結(jié)合題意可得:,整理可得:,即點C的軌跡是以AB中點為圓心,為半徑的圓.故選:A.【點睛】本題主要考查平面向量及其數(shù)量積的坐標(biāo)運算,軌跡方程的求解等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.11、D【解析】根據(jù)特稱命題否定的方法求解,改變量詞,否定結(jié)論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.12、A【解析】代入等差中項公式即可解決.【詳解】與的等差中項是故選:A二、填空題:本題共4小題,每小題5分,共20分。13、72【解析】利用獨立事件的概率乘法公式和對立事件的概率公式可求得所求事件的概率.【詳解】由題意可知,若甲、乙兩個各射擊1次,至少有一人命中目標(biāo)的概率為.故答案為:14、【解析】設(shè)直線與曲線相切的切點為,借助導(dǎo)數(shù)的幾何意義用表示出m,n即可作答.【詳解】設(shè)直線與曲線相切的切點為,而,則直線的斜率,于是得,即,由得,而,于是得,即因,則,,當(dāng)且僅當(dāng)時取“=”,所以的最小值為.故答案為:【點睛】結(jié)論點睛:函數(shù)y=f(x)是區(qū)間D上的可導(dǎo)函數(shù),則曲線y=f(x)在點處的切線方程為:.15、【解析】根據(jù)雙曲線的焦點在圓上可求出的值,設(shè)線段與軸的交點坐標(biāo)為,進(jìn)而根據(jù)求出的坐標(biāo),代入圓中,求出的值,即可求出結(jié)果.【詳解】因為雙曲線的焦點在圓上,所以,設(shè)線段與軸的交點坐標(biāo)為,結(jié)合雙曲線與圓的對稱性可知為線段的中點,又因為,即,且,則,又因為直線的方程為,所以,又因為在圓上,所以,又因為,則,所以,從而,故,故答案為:.16、①.②.【解析】(1)利用三角關(guān)系分別利用表示、即可求解;(2)利用導(dǎo)數(shù)求最小值的方法即可求解.【詳解】過點分別作,,垂足分別為,,則,在中,,則,同理可得,所以.令,則,令,,得,即,由,解得,當(dāng)時,;當(dāng)時,,所以當(dāng)時,取得極小值,也是最小值,則,故輸氣管的長度不能低于m.故答案為:;.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】(1)過M作MN∥CD交PD于點N,證明四邊形ABMN為平行四邊形,即可證明BM∥平面PAD.(2)過B作AD的垂線,垂足為E,證明BE⊥平面PAD,在利用VP-ADM=VM-PAD求三棱錐P-ADM的體積.【詳解】解:(1)證明:如圖,過M作MN∥CD交PD于點N,連接AN.∵PM=2MC,∴MN=CD.又AB=CD,且AB∥CD∴AB∥MN∴四邊形ABMN為平行四邊形∴BM∥AN.又BM?平面PAD,AN?平面PAD∴BM∥平面PAD.(2)如圖,過B作AD的垂線,垂足為E.∵PD⊥平面ABCD,BE?平面ABCD∴PD⊥BE.又AD?平面PAD,PD?平面PAD,AD∩PD=D∴BE⊥平面PAD.由(1)知,BM∥平面PAD∴點M到平面PAD的距離等于點B到平面PAD的距離,即BE.連接BD,在△ABD中,AB=AD=2,∠BAD=60°,∴BE=則三棱錐P-ADM的體積VP-ADM=VM-PAD=×S△PAD×BE=×3×=.18、(1)(2)或【解析】(1)由題意兩立方程組,求兩直線的交點的坐標(biāo),利用兩直線平行的性質(zhì),用待定系數(shù)法求出的方程(2)分類討論直線的斜率,利用點到直線的距離公式,用點斜式求直線的方程【小問1詳解】解:由,解得,所以兩直線和的交點為當(dāng)直線與直線平行,設(shè)的方程為,把點代入求得,可得的方程為【小問2詳解】解:斜率不存在時,直線方程為,滿足點到直線的距離為5當(dāng)?shù)男甭蚀嬖跁r,設(shè)直限的方程為,即,則點到直線的距離為,求得,故的方程為,即綜上,直線的方程為或19、(1)證明見解析;(2).【解析】(1)利用面面垂直和線面垂直的性質(zhì)定理可證得;由菱形邊長和角度的關(guān)系可證得;利用線面垂直的判定定理可證得結(jié)論;(2)以為坐標(biāo)原點建立起空間直角坐標(biāo)系,利用空間向量法可求得二面角的余弦值.詳解】(1)平面平面,平面平面,且平面,平面,平面,,四邊形為菱形且為中點,,又,,又,,平面,,平面.(2)以為坐標(biāo)原點可建立如下圖所示的空間直角坐標(biāo)系,設(shè),則,,,,,,則,,,設(shè)平面的法向量,則,令,則,,,設(shè)平面的法向量,則,令,則,,,,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查立體幾何中線面垂直關(guān)系的證明、空間向量法求解二面角的問題;涉及到面面垂直的性質(zhì)定理、線面垂直的判定與性質(zhì)定理的應(yīng)用,屬于??碱}型.20、答案見解析【解析】(1)根據(jù)題設(shè)條件可得關(guān)于基本量的方程組,求解后可得的通項公式.(2)利用公式法可求數(shù)列的前項和.【詳解】解:選擇條件①和條件②(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴,.(2)設(shè)等比數(shù)列的公比為,,∴解得,.設(shè)數(shù)列的前項和為,∴.選擇條件①和條件③:(1)設(shè)等差數(shù)列的公差為,∴解得:,.∴.(2),設(shè)等比數(shù)列的公比為,.∴,解得,.設(shè)數(shù)列的前項和為,∴.選擇條件②和條件③:(1)設(shè)等比數(shù)列的公比為,,∴,解得,,.設(shè)等差數(shù)列的公差為,∴,又,故.∴.(2)設(shè)數(shù)列的前項和為,由(1)可知.【點睛】方法點睛:等差數(shù)列或等比數(shù)列的處理有兩類基本方法:(1)利用基本量即把數(shù)學(xué)問題轉(zhuǎn)化為關(guān)于基本量的方程或方程組,再運用基本量解決與數(shù)列相關(guān)的問題;(2)利用數(shù)列的性質(zhì)求解即通過觀察下標(biāo)的特征和數(shù)列和式的特征選擇合適的數(shù)列性質(zhì)處理數(shù)學(xué)問題21、(1);(2)證明見解析.【解析】(1)解方程和即得解;(2)設(shè),,將與圓P的方程聯(lián)立得到韋達(dá)定理,再寫出直線的方程即得解.【小問1詳解】解:因為拋物線C上一點,且,所以到拋物線C的準(zhǔn)線的距離為2則,,則,所以,故拋物線C的方程為【小問2詳解】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度水資源保護(hù)與修復(fù)工程監(jiān)理協(xié)議2篇
- 學(xué)校突發(fā)公共衛(wèi)生事件應(yīng)急預(yù)案例文(5篇)
- 二零二五年度桉樹木材出口代理服務(wù)合同3篇
- 二零二五年度文化藝術(shù)保險合同執(zhí)行與藝術(shù)品風(fēng)險全面擔(dān)保協(xié)議3篇
- 手術(shù)室安全管理制度模版(3篇)
- 自行車課程設(shè)計論文
- ktv部服務(wù)員職責(zé)(3篇)
- 2025年科研項目立項管理制度范文(2篇)
- 二零二五年度房地產(chǎn)聯(lián)建合作開發(fā)委托協(xié)議2篇
- 車輛擁堵交通事故識別系統(tǒng)
- 銑工高級工測試題(含答案)
- 送貨員崗位勞動合同模板
- 2024年自然資源部所屬事業(yè)單位招聘(208人)歷年高頻難、易錯點500題模擬試題附帶答案詳解
- 上海南洋模范2025屆高二生物第一學(xué)期期末檢測模擬試題含解析
- 《建筑施工安全檢查標(biāo)準(zhǔn)》JGJ59-2019
- 廣東茂名市選聘市屬國有企業(yè)招聘筆試題庫2024
- 2025屆高考數(shù)學(xué)一輪復(fù)習(xí)建議-函數(shù)與導(dǎo)數(shù)專題講座課件
- 2024-2030年中國高性能混凝土行業(yè)銷售規(guī)模與投資盈利預(yù)測報告
- 江蘇省常州市教育學(xué)會2023-2024學(xué)年高一上學(xué)期期末考試化學(xué)試題 (解析版)
- 中醫(yī)兒科護(hù)理課件
- 部編人教版二年級道德與法治上冊全冊教學(xué)設(shè)計(含反思)
評論
0/150
提交評論