江西省桑海中學(xué)等三校2025屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第1頁(yè)
江西省桑海中學(xué)等三校2025屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第2頁(yè)
江西省桑海中學(xué)等三校2025屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第3頁(yè)
江西省桑海中學(xué)等三校2025屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第4頁(yè)
江西省桑海中學(xué)等三校2025屆數(shù)學(xué)高二上期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西省桑海中學(xué)等三校2025屆數(shù)學(xué)高二上期末檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知x,y是實(shí)數(shù),且,則的最大值是()A. B.C. D.2.已知橢圓的離心率為,則()A. B.C. D.3.已知在平面直角坐標(biāo)系中,圓的方程為,直線過點(diǎn)且與直線垂直.若直線與圓交于兩點(diǎn),則的面積為A.1 B.C.2 D.4.已知直線與拋物線C:相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),,的斜率分別為,,則()A. B.C. D.5.方程表示的曲線經(jīng)過的一點(diǎn)是()A. B.C. D.6.已知向量,,且,則值是()A. B.C. D.7.過雙曲線Ω:(a>0,b>0)右焦點(diǎn)F作x軸的垂線,與Ω在第一象限的交點(diǎn)為M,且直線AM的斜率大于2,其中A為Ω的左頂點(diǎn),則Ω的離心率的取值范圍為()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)8.已知各項(xiàng)均為正數(shù)的等比數(shù)列滿足,若存在兩項(xiàng),使得,則的最小值為()A.4 B.C. D.99.設(shè),則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件10.在等差數(shù)列中,,,則的取值范圍是()A. B.C. D.11.下列直線中,與直線垂直的是()A. B.C. D.12.已知函數(shù)(且,)的一個(gè)極值點(diǎn)為2,則的最小值為()A. B.C. D.7二、填空題:本題共4小題,每小題5分,共20分。13.在正項(xiàng)等比數(shù)列中,,,則的公比為___________.14.已知點(diǎn)是橢圓上任意一點(diǎn),則點(diǎn)到直線距離的最小值為______15.設(shè)a為實(shí)數(shù),若直線與直線平行,則a值為______.16.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AA1,BB1的中點(diǎn),G為棱A1B1上的一點(diǎn),且A1G=(0<<2),則點(diǎn)G到平面D1EF的距離為____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)長(zhǎng)方體中,,點(diǎn)分別在上,且.(1)求證:平面;(2)求平面與平面所成角的余弦值.18.(12分)如圖,在三棱錐P-ABC中,△ABC是以AC為底的等腰直角三角形,PA=PB=PC=AC=4,O為AC的中點(diǎn).(1)證明:PO⊥平面ABC;(2)若點(diǎn)M在棱BC上,且,求平面MAP與平面CAP所成角的大小.19.(12分)已知函數(shù)在處的切線與軸平行(1)求的值;(2)判斷在上零點(diǎn)的個(gè)數(shù),并說明理由20.(12分)如圖,已知矩形ABCD所在平面外一點(diǎn)P,平面ABCD,E、F分別是AB、PC的中點(diǎn)求證:(1)共面;(2)求證:21.(12分)已知等差數(shù)列滿足,.(1)求的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.22.(10分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)設(shè)為的導(dǎo)數(shù),若方程的兩根為,且,當(dāng)時(shí),不等式對(duì)任意的恒成立,求正實(shí)數(shù)的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】將方程化為圓的標(biāo)準(zhǔn)方程,則的幾何意義是圓上一點(diǎn)與點(diǎn)連線的斜率,進(jìn)而根據(jù)直線與圓相切求得答案.【詳解】方程可化為,表示以為圓心,為半徑的圓,的幾何意義是圓上一點(diǎn)與點(diǎn)A連線的斜率,設(shè),即,當(dāng)此直線與圓相切時(shí),斜率最大或最小,當(dāng)切線位于切線AB時(shí)斜率最大.此時(shí),,,所以的最大值為.故選:D2、D【解析】由離心率及橢圓參數(shù)關(guān)系可得,進(jìn)而可得.【詳解】因?yàn)?,則,所以.故選:D3、A【解析】∵圓的方程為,即,∴圓的圓心為,半徑為2.∵直線過點(diǎn)且與直線垂直∴直線.∴圓心到直線的距離.∴直線被圓截得的弦長(zhǎng),又∵坐標(biāo)原點(diǎn)到的距離為,∴的面積為.考點(diǎn):1、直線與圓的位置關(guān)系;2、三角形的面積公式.4、C【解析】設(shè),,由消得:,又,由韋達(dá)定理代入計(jì)算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點(diǎn)睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運(yùn)算求解能力.5、C【解析】當(dāng)時(shí)可得,可得答案.【詳解】當(dāng)時(shí)可得所以方程表示的曲線經(jīng)過的一點(diǎn)是,且其它點(diǎn)都不滿足方程,故選:C6、A【解析】求出向量,的坐標(biāo),利用向量數(shù)量積坐標(biāo)表示即可求解.【詳解】因?yàn)橄蛄?,,所以,,因?yàn)椋?,解得:,故選:A.7、B【解析】求點(diǎn)A和M的坐標(biāo),進(jìn)而表示斜率,可得,整理得b2>2ac+2a2,從而可解得離心率的范圍.【詳解】F(c,0),設(shè)M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【點(diǎn)睛】解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.8、C【解析】由求得,代入求得,利用基本不等式求出它的最小值【詳解】因?yàn)楦黜?xiàng)均為正數(shù)的等比數(shù)列滿足,可得,即解得或(舍去)∵,,∴=當(dāng)且僅當(dāng),即m=2,n=4時(shí),等號(hào)成立故的最小值等于.故選:C【點(diǎn)睛】方法點(diǎn)睛:本題主要考查等比數(shù)列的通項(xiàng)公式和基本不等式的應(yīng)用,解題的關(guān)鍵是常量代換的技巧,所謂常量代換,就是把一個(gè)常數(shù)用代數(shù)式來代替,如,再把常數(shù)6代換成已知中的m+n,即.常量代換是基本不等式里常用的一個(gè)技巧,可以優(yōu)化解題,提高解題效率.9、A【解析】根據(jù)兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當(dāng)時(shí),,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A10、A【解析】根據(jù)題設(shè)可得關(guān)于的不等式,從而可求的取值范圍.【詳解】設(shè)公差為,因?yàn)?,,所以,即,從?故選:A.11、C【解析】,,若,則,項(xiàng),符合條件,故選12、B【解析】求出函數(shù)的導(dǎo)數(shù),由給定極值點(diǎn)可得a與b的關(guān)系,再借助“1”的妙用求解即得.【詳解】對(duì)求導(dǎo)得:,因函數(shù)的一個(gè)極值點(diǎn)為2,則,此時(shí),,,因,即,因此,在2左右兩側(cè)鄰近的區(qū)域值一正一負(fù),2是函數(shù)的一個(gè)極值點(diǎn),則有,又,,于是得,當(dāng)且僅當(dāng),即時(shí)取“=”,所以的最小值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】由題設(shè)知等比數(shù)列公比,根據(jù)已知條件及等比數(shù)列通項(xiàng)公式列方程求公比即可.【詳解】由題設(shè),等比數(shù)列公比,且,所以,可得或(舍),故公比為3.故答案為:314、【解析】求橢圓上平行于的直線方程,利用平行線的距離公式求橢圓上點(diǎn)到直線的最小值.【詳解】設(shè)與橢圓相切,且平行于的直線為,聯(lián)立橢圓整理可得:,則,∴,又兩平行線的距離,∴到直線距離的最小值為.故答案為:.15、【解析】根據(jù)兩直線平行得到,解方程組即可求出結(jié)果.【詳解】由題意可知,解得,故答案為:.16、【解析】先證明A1B1∥平面D1EF,進(jìn)而將問題轉(zhuǎn)化為求點(diǎn)A1到平面D1EF的距離,然后建立空間直角坐標(biāo)系,通過空間向量的運(yùn)算求得答案.【詳解】由題意得A1B1∥EF,A1B1?平面D1EF,EF?平面D1EF,所以A1B1∥平面D1EF,則點(diǎn)G到平面D1EF的距離等于點(diǎn)A1到平面D1EF的距離.以D為坐標(biāo)原點(diǎn),DA,DC,DD1所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系D-xyz,則D1(0,0,2),E(2,0,1),F(xiàn)(2,2,1),A1(2,0,2),所以,,.設(shè)平面D1EF的法向量為,則,令x=1,則y=0,z=2,所以平面D1EF的一個(gè)法向量.點(diǎn)A1到平面D1EF的距離==,即點(diǎn)G到平面D1EF的距離為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析.(2)【解析】(1)根據(jù)線面垂直的性質(zhì)和判定可得證;(2)以為坐標(biāo)原點(diǎn),分以所在直線為軸建立如圖所示的空間直角坐標(biāo)系,由面面角的空間向量求解方法可得答案.【小問1詳解】證明:長(zhǎng)方體中,平面,又平面,又平面,又平面同理可證,而平面,平面【小問2詳解】解:以為坐標(biāo)原點(diǎn),分以所在直線為軸建立如圖所示的空間直角坐標(biāo)系.從而,,,由(1)知,為平面的一個(gè)法向量,設(shè)平面的法向量為,則,,則,從而,令,則,得平面的一個(gè)法向量為由圖示得平面與平面所成的角為銳角,平面與平面所成的角的余弦值為18、(1)證明見解析(2)【解析】(1)接BO,由是等邊三角形得,由得出,再利用線面垂直的判斷定理可得平面;(2)建立以為坐標(biāo)原點(diǎn),分別為軸的空間直角坐標(biāo)系,求出平面的法向量、平面的法向量,利用二面角的向量求法可得答案.【小問1詳解】連接BO,由已知△ABC是以AC為底的等腰直角三角形,且PA=PB=PC=AC=4,O為AC的中點(diǎn),則是等邊三角形,,,在中,,滿足,即是直角三角形,則,又,平面,所以平面.【小問2詳解】建立以為坐標(biāo)原點(diǎn),分別為軸的空間直角坐標(biāo)系如圖所示,則,,,,則平面的法向量為,由已知,得到點(diǎn)坐標(biāo),,設(shè)平面的法向量則,令,則,即,設(shè)平面MAP與平面CAP所成角為,則,則平面MAP與平面CAP所成角為.19、(1)0(2)f(x)在(0,π)上有且只有一個(gè)零點(diǎn),理由見解析【解析】(1)利用導(dǎo)數(shù)的幾何意義求解;(2)由,可得,令,,,,利用導(dǎo)數(shù)法求解.【小問1詳解】解:,所以k=f′(0)=-a=0,所以a=0;【小問2詳解】由,可得,令,,所以,①當(dāng)時(shí),sinx+cosx≥1,ex>1,所以g′(x)>0,所以g(x)在上單調(diào)遞增,又因?yàn)間(0)=0,所以g(x)在上無零點(diǎn);②當(dāng)時(shí),令,所以h′(x)=2cosxex<0,即h(x)在上單調(diào)遞減,又因?yàn)椋琱(π)=-eπ-1<0,所以存在,,所以g(x)在上單調(diào)遞增,在上單調(diào)遞減,因?yàn)?,g(π)=-π<0,所以g(x)在上且只有一個(gè)零點(diǎn);綜上所述:f(x)在(0,π)上有且只有一個(gè)零點(diǎn)20、(1)詳見解析;(2)詳見解析.【解析】(1)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,設(shè),,,求出,,,,0,,,,,從而,由此能證明共面(2)求出,0,,,,,由,能證明【詳解】證明:如圖,以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,設(shè),,,則0,,0,,2b,,2b,,0,,為AB的中點(diǎn),F(xiàn)為PC的中點(diǎn),0,,b,,b,,,2b,,共面.(2),【點(diǎn)睛】本題考查三個(gè)向量共面的證明,考查兩直線垂直的證明,是基礎(chǔ)題21、(1);(2).【解析】(1)設(shè)等差數(shù)列的公差為,根據(jù)題意可得出關(guān)于、的方程組,解出這兩個(gè)量的值,可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)法可求得.【小問1詳解】解:設(shè)等差數(shù)列的公差為,則,可得,由可得,即,解得,,故.【小問2詳解】解:,因此,.22、(1)(2)1【解析】(1)先求導(dǎo)數(shù),根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論