2025屆黑龍江省綏化市青岡縣高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2025屆黑龍江省綏化市青岡縣高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2025屆黑龍江省綏化市青岡縣高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2025屆黑龍江省綏化市青岡縣高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2025屆黑龍江省綏化市青岡縣高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆黑龍江省綏化市青岡縣高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數(shù)z滿足(其中為虛數(shù)單位),則()A. B.C. D.2.在四棱錐P-ABCD中,底面ABCD,,,點E為PA的中點,,,,則點B到平面PCD的距離為()A. B.C. D.3.等比數(shù)列的各項均為正數(shù),且,則A. B.C. D.4.已知點是橢圓上的任意一點,過點作圓:的切線,設其中一個切點為,則的取值范圍為()A. B.C. D.5.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知橢圓方程為:,則其離心率為()A. B.C. D.7.已知橢圓C:的左,右焦點,過原點的直線l與橢圓C相交于M,N兩點.其中M在第一象限.,則橢圓C的離心率的取值范圍為()A. B.C. D.8.若直線與圓相切,則()A. B.或2C. D.或9.命題“存在,使得”為真命題的一個充分不必要條件是()A. B.C. D.10.直線的傾斜角的取值范圍是()A. B.C. D.11.過拋物線的焦點的直線交拋物線于兩點,點是原點,若;則的面積為()A. B.C. D.12.已知實數(shù),滿足,則的最大值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在空間直角坐標系中,已知,,,,則___________.14.已知等差數(shù)列的公差為1,且是和的等比中項,則前10項的和為___________.15.如圖所示,在正方體中,點是底面內(nèi)(含邊界)的一點,且平面,則異面直線與所成角的取值范圍為____________16.已知點在拋物線上,那么點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,四邊形為正方形,已知平面,且,E為中點(1)證明:平面;(2)證明:平面平面18.(12分)在復數(shù)集C內(nèi)方程有六個根分別為(1)解出這六個根;(2)在復平面內(nèi),這六個根對應的點分別為A,B,C,D,E,F(xiàn);求多邊形ABCDEF的面積19.(12分)已知拋物線C:經(jīng)過點.(1)求拋物線C的方程及其準線方程;(2)經(jīng)過拋物線C的焦點F的直線l與拋物線交于兩點M,N,且與拋物線的準線交于點Q.若,求直線l的方程.20.(12分)已知函數(shù),若函數(shù)處取得極值(1)求,的值;(2)求函數(shù)在上的最大值和最小值21.(12分)已知橢圓的離心率為,橢圓過點.(1)求橢圓C的方程;(2)過點的直線交橢圓于M、N兩點,已知直線MA,NA分別交直線于點P,Q,求的值.22.(10分)如圖甲,平面圖形中,,沿將折起,使點到點的位置,如圖乙,使.(1)求證:平面平面;(2)若點滿足,求點到直線的距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用復數(shù)的除法化簡復數(shù),利用復數(shù)的模長公式可求得結(jié)果.【詳解】,因此,.故選:B2、D【解析】為中點,連接,易得為平行四邊形,進而可知B到平面PCD的距離即為到平面PCD的距離,再由線面垂直的性質(zhì)確定線線垂直,在直角三角形中應用勾股定理求相關線段長,即可得△為直角三角形,最后應用等體積法求點面距即可.【詳解】若為中點,連接,又E為PA的中點,所以,,又,,則且,所以為平行四邊形,即,又面,面,所以面,故B到平面PCD的距離,即為到平面PCD的距離,由底面ABCD,面ABCD,即,,,又,即,,則面,面,即,而,,,,易知:,在△中;在△中;在△中;綜上,,故,又,則.所以B到平面PCD的距離為.故選:D3、B【解析】根據(jù)等比數(shù)列的性質(zhì),結(jié)合已知條件,求得,進而求得的值.【詳解】由于數(shù)列是等比數(shù)列,故,所以,故.故選B.【點睛】本小題主要考查等比數(shù)列的性質(zhì),考查對數(shù)運算,屬于基礎題.4、B【解析】設,得到,利用橢圓的范圍求解.【詳解】解:設,則,,,因為,所以,即,故選:B5、B【解析】因但6、B【解析】根據(jù)橢圓的標準方程,確定,計算離心率即可.【詳解】由知,,,,即,故選:B7、D【解析】由題設易知四邊形為矩形,可得,結(jié)合已知條件有即可求橢圓C的離心率的取值范圍.【詳解】由橢圓的對稱性知:,而,又,即四邊形為矩形,所以,則且M在第一象限,整理得,所以,又即,綜上,,整理得,所以.故選:D.【點睛】關鍵點點睛:由橢圓的對稱性及矩形性質(zhì)可得,由已知條件得到,進而得到橢圓參數(shù)的齊次式求離心率范圍.8、D【解析】根據(jù)圓心到直線的距離等于半徑列方程即可求解.【詳解】由圓可得圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,整理可得:,所以或,故選:D.9、B【解析】“存在,使得”為真命題,可得,利用二次函數(shù)的單調(diào)性即可得出.再利用充要條件的判定方法即可得出.【詳解】解:因為“存在,使得”為真命題,所以,因此上述命題得個充分不必要條件是.故選:B.【點睛】本題考查了二次函數(shù)的單調(diào)性、充要條件的判定方法,考查了推理能力與計算能力,屬于中檔題.10、A【解析】由直線方程求得直線斜率的范圍,再由斜率等于傾斜角的正切值可得直線的傾斜角的取值范圍.【詳解】∵直線的斜率,,設直線的傾斜角為,則,解得.故選:A.11、C【解析】拋物線焦點為,準線方程為,由得或所以,故答案為C考點:1、拋物線的定義;2、直線與拋物線的位置關系12、A【解析】畫出不等式組所表示的平面區(qū)域,利用直線的斜率公式模型進行求解即可.【詳解】不等式組表示的平面區(qū)域如下圖所示:,代數(shù)式表示不等式組所表示的平面區(qū)域內(nèi)的點與點連線的斜率,由圖象可知:直線的斜率最大,由,即,即的最大值為:,因此的最大值為,故選:A二、填空題:本題共4小題,每小題5分,共20分。13、或##或【解析】根據(jù)向量平行時坐標的關系和向量的模公式即可求解.【詳解】,且,設,,解得,或.故答案為:或.14、【解析】利用等比中項及等差數(shù)列通項公式求出首項,再利用等差數(shù)列的前項和公式求出前10項的和.【詳解】設等差數(shù)列的首項為,由已知條件得,即,,解得,則.故答案為:.15、【解析】過作平面平面,得到在與平面的交線上,連接,證得平面平面,得到點在上,設正方體的棱長為,且,得到,,設與所成角為,利用向量的夾角公式,求得,結(jié)合二次函數(shù)的性質(zhì),即可求解.【詳解】過作平面平面,因為點是底面內(nèi)(含邊界)的一點,且平面,則平面,即在與平面的交線上,連接,因為且,所以四邊形是平行四邊形,所以,平面,同理可證平面,所以平面平面,則平面即為,點在線段上,設正方體的棱長為,且,則,,可得,設與所成角為,則,當時,取得最小值,最小值為,當或時,取得最大值,最大值為故答案為16、【解析】由拋物線定義可得,由此可知當為與拋物線的交點時,取得最小值,進而求得點坐標.【詳解】由題意得:拋物線焦點為,準線為作,垂直于準線,如下圖所示:由拋物線定義知:(當且僅當三點共線時取等號)即的最小值為,此時為與拋物線的交點故答案為【點睛】本題考查拋物線線上的點到焦點的距離與到定點距離之和最小的相關問題的求解,關鍵是能夠熟練應用拋物線定義確定最值取得的位置.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】(1)設與交于點,連結(jié),易證,再利用線面平行的判斷定理即可證得答案;(2)利用線面垂直的判定定理可得平面,再由面面垂直的判斷定理即可.【小問1詳解】連接交于,連接因為底面是正方形,所以為中點,因為在中,是的中點,所以,因為平面平面,所以平面【小問2詳解】側(cè)棱底面底面,所以,因為底面是正方形,所以,因為與為平面內(nèi)兩條相交直線,所以平面,因為平面,所以平面平面.18、(1)(2)【解析】(1)原式可因式分解為,令,設可求解出的兩個虛根,同理可求解的兩個虛根,即得解;(2)六個點構(gòu)成的圖形為正六邊形,邊長為1,計算即可【小問1詳解】由題意,當時,設故,所以解得:,即當時,設故所以解得:,即故:【小問2詳解】六個根對應的點分別為A,B,C,D,E,F(xiàn),其中在復平面中描出這六個點如圖所示:六個點構(gòu)成的圖形為正六邊形,邊長為1故19、(1)拋物線C的方程為,準線方程為(2)或.【解析】(1)將點代入拋物線求出即可得出拋物線方程和準線方程;(2)設出直線方程,與拋物線聯(lián)立,表示出弦長和即可求出.【小問1詳解】將代入可得,解得,所以拋物線C的方程為,準線方程為;【小問2詳解】由題得,設直線方程為,,設,聯(lián)立方程,可得,則,所以,因為直線與準線交于點Q,則,則,因為,所以,解得,所以直線l的方程為或.20、(1);(2)最大值為,最小值為【解析】(1)求出導函數(shù),由即可解得;(2)求出函數(shù)的單調(diào)區(qū)間,進而可以求出函數(shù)的最值.【詳解】解:(1)由題意,可得,得.(2),令,得或(舍去)當變化時,與變化如下遞增遞減所以函數(shù)在上的最大值為,最小值為.21、(1)(2)1【解析】(1)由題意得到關于a,b的方程組,求解方程組即可確定橢圓方程;(2)首先聯(lián)立直線與橢圓的方程,然后由直線MA,NA的方程確定點P,Q的縱坐標,將線段長度的比值轉(zhuǎn)化為縱坐標比值的問題,進一步結(jié)合韋達定理可證得,從而可得兩線段長度的比值.【小問1詳解】由題意,點橢圓上,有,解得故橢圓C的方程為.【小問2詳解】當直線l的斜率不存在時,顯然不符;當直線l的斜率存在時,設直線l為:聯(lián)立方程得:由,設,有又由直線AM:,令x=-4得,將代入得:,同理得:.很明顯,且,注意到,,而,故所以.【點睛】本題考查求橢圓的方程,解題關鍵是利用離心率與橢圓上的點,找到關于a,b,c的等量關系求解a與b.本題中直線方程代入橢圓方程整理后應用韋達定理求出,.表示出,,然后轉(zhuǎn)化為相應的比值關系.考查了學生的運算求解能力,邏輯推理能力.屬于中檔題22、(1)證明見解析(2)【解析】(1)利用給定條件可得平面,再證即可證得平面推理作答.(2)由(1)得EA,EB,EG兩兩垂直,建立空間直角坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論