版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
云南省會澤縣第一中學2025屆高二數(shù)學第一學期期末質量跟蹤監(jiān)視試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線的兩個焦點為,點是上的一點,且,則雙曲線的漸近線與軸的夾角的取值范圍是()A. B.C. D.2.若數(shù)列滿足,則()A.2 B.6C.12 D.203.若定義在R上的函數(shù)滿足,則不等式的解集為()A. B.C. D.4.方程表示的曲線是A.兩條直線 B.兩條射線C.兩條線段 D.一條直線和一條射線5.若a,b,c為實數(shù),且,則以下不等式成立的是()A. B.C. D.6.函數(shù),則曲線在點處的切線方程為()A. B.C. D.7.已知函數(shù),為的導數(shù),則()A.-1 B.1C. D.8.已知是等比數(shù)列,,,則()A. B.C. D.9.已知,,,則的大小關系是()A. B.C. D.10.如果橢圓的弦被點平分,那么這條弦所在的直線的方程是()A. B.C. D.11.直線且的傾斜角為()A. B.C. D.12.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知等比數(shù)列滿足,,公比,則的前2021項和______14.已知水平放置的是按“斜二測畫法”得到如下圖所示的直觀圖,其中,,則原的面積為______.15.已知直線與平行,則實數(shù)的值為_____________.16.等差數(shù)列的公差,是其前n項和,給出下列命題:若,且,則和都是中的最大項;給定n,對于一些,都有;存在使和同號;.其中正確命題的序號為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前n項和為,且,,數(shù)列滿足:,,,.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前n項和;(3)若不等式對任意恒成立,求實數(shù)k的取值范圍18.(12分)數(shù)列{}的首項為,且(1)證明數(shù)列為等比數(shù)列,并求數(shù)列{}的通項公式;(2)若,求數(shù)列{}的前n項和19.(12分)已知點在橢圓:上,橢圓E的離心率為.(1)求橢圓E的方程;(2)若不平行于坐標軸且不過原點O的直線l與橢圓E交于B,C兩點,判斷是否可能為等邊三角形,并說明理由.20.(12分)已知橢圓的焦距為,離心率為.(1)求橢圓的方程;(2)若斜率為1的直線與橢圓交于不同的兩點,,求的最大值.21.(12分)如圖,在三棱錐中,平面平面,,都是等腰直角三角形,,,,分別為,的中點.(1)求證:平面;(2)求證:平面.22.(10分)已知橢圓經(jīng)過點,且離心率為(1)求橢圓C的標準方程;(2)已知點A,B是橢圓C的上,下頂點,點P是直線上的動點,直線PA與橢圓C的另一交點為E,直線PB與橢圓C的另一交點為F.證明:直線EF過定點
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由條件結合雙曲線的定義可得,然后可得,然后可求出的范圍即可.【詳解】由雙曲線的定義可得,結合可得當點不為雙曲線的頂點時,可得,即當點為雙曲線的頂點時,可得,即所以,所以,所以所以雙曲線的漸近線與軸的夾角的取值范圍是故選:B2、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D3、B【解析】構造函數(shù),根據(jù)題意,求得其單調(diào)性,利用函數(shù)單調(diào)性解不等式即可.【詳解】構造函數(shù),則,故在上單調(diào)遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點睛】本題考察利用導數(shù)研究函數(shù)單調(diào)性,以及利用函數(shù)單調(diào)性求解不等式,解決本題的關鍵是根據(jù)題意構造函數(shù),屬中檔題.4、D【解析】由,得2x+3y?1=0或.即2x+3y?1=0(x?3)為一條射線,或x=4為一條直線.∴方程表示的曲線是一條直線和一條射線.故選D.點睛:在直角坐標系中,如果某曲線C(看作點的集合或適合某種條件的點的軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點那么,這個方程叫做曲線的方程,這條曲線叫做方程的曲線在求解方程時要注意變量范圍.5、C【解析】利用不等式的性質直接推導和取值驗證相結合可解.【詳解】取可排除ABD;由不等式的性質易得C正確.故選:C6、D【解析】對函數(shù)求導,利用導數(shù)的幾何意義求出切線斜率即可計算作答.【詳解】依題意,,即有,而,則過點,斜率為1的直線方程為:,所以曲線在點處切線方程為.故選:D7、B【解析】由導數(shù)的乘法法則救是導函數(shù)后可得結論【詳解】解:由題意,,所以.故選:B8、D【解析】由,,可求出公比,從而可求出等比數(shù)的通項公式,則可求出,得數(shù)列是一個等比數(shù)列,然后利用等比數(shù)的求和公式可求得答案【詳解】由題得.所以,所以.所以,所以數(shù)列是一個等比數(shù)列.所以=.故選:D9、B【解析】利用微積分基本定理計算,利用積分的幾何意義求扇形面積得到,然后比較大小.【詳解】,表示以原點為圓心,半徑為2的圓在第二象限的部分的面積,∴;,∵e=2.71828…>2.7,,,,故選:10、B【解析】設該弦所在直線與橢圓的兩個交點分別為,,則,利用點差法可得答案.【詳解】設該弦所在直線與橢圓的兩個交點分別為,,則因為,兩式相減可得,,即由中點公式可得,所以,即,所以AB所在直線方程為,即故選:B11、C【解析】由直線方程可知其斜率,根據(jù)斜率和傾斜角關系可得結果.【詳解】直線方程可化為:,直線的斜率,直線的傾斜角為.故選:C.12、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列的求和公式求解即可.【詳解】因為等比數(shù)列滿足,,公比,所以,故答案為:14、【解析】根據(jù)直觀圖畫出原圖,再根據(jù)三角形面積公式計算可得.【詳解】解:依題意得到直觀圖的原圖如下:且,所以故答案為:【點睛】本題考查斜二測畫法中原圖和直觀圖面積之間的關系,屬于基礎題15、或【解析】根據(jù)平行線的性質進行求解即可.【詳解】因為直線與平行,所以有:或,故答案為:或16、【解析】對,根據(jù)數(shù)列的單調(diào)性和可判斷;對和,利用等差數(shù)列的通項公式可直接推導;對,利用等差數(shù)列的前項和可直接推導.【詳解】不妨設等差數(shù)列的首項為對,,可得:,解得:,即又,則是遞減的,則中的前5項均為正數(shù),所以和都是中的最大項,故正確;對,,故有:,故正確;對,,又,則,說明不存在使和同號,故錯誤;對,有:故并不是恒成立的,故錯誤故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2);(3).【解析】(1)由可得數(shù)列是等比數(shù)列,即可求得,由得數(shù)列是等差數(shù)列,即可求得.(2)由(1)可得,再利用錯位相減法求和即得.(3)將問題等價轉化為對任意恒成立,構造數(shù)列并判斷其單調(diào)性,即可求解作答.【小問1詳解】數(shù)列的前項和為,,,當時,,則,而當時,,即得,因此,數(shù)列是以1為首項,3為公比的等比數(shù)列,則,數(shù)列中,,,則數(shù)列是等差數(shù)列,而,,即有公差,則,所以數(shù)列,的通項公式分別是:,.【小問2詳解】由(1)知,,則,則有,兩式相減得:,從而得,所以數(shù)列的前n項和.【小問3詳解】由(1)知,,依題意得對任意恒成立,設,則,當,,為單調(diào)遞減數(shù)列,當,,為單調(diào)遞增數(shù)列,顯然有,則當時,取得最大值,即最大值是,因此,,所以實數(shù)k取值范圍是.【點睛】思路點睛:一般地,如果數(shù)列是等差數(shù)列,是等比數(shù)列,求數(shù)列的前n項和時,可采用錯位相減法求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解18、(1)證明見解析,;(2).【解析】(1)利用給定的遞推公式變形,再利用等比數(shù)列定義直接判斷并求出通項得解.(2)由(1)的結論求出,再利用裂項相消法計算作答.【小問1詳解】數(shù)列{}中,,則,由得:,所以數(shù)列是首項為3,公比為2的等比數(shù)列,則有,即,所以數(shù)列{}的通項公式是.【小問2詳解】由(1)知,,,則,所以數(shù)列{}的前n項和.19、(1)(2)三角形不可能是等邊三角形,理由見解析【解析】(1)根據(jù)點坐標和離心率可得橢圓方程;(2)假設為等邊三角形,設,與橢圓方程聯(lián)立,由韋達定理得的中點的坐標,,利用得出矛盾.小問1詳解】由點在橢圓上,得,即,又,即,解得,所以橢圓的方程為.【小問2詳解】假設為等邊三角形,設,,聯(lián)立,消去得,由韋達定理得,由得,故,所以的中點為,所以,故,與等邊三角形中矛盾,所以假設不成立,故三角形不可能是等邊三角形.20、(1);(2).【解析】(1)由題設可得且,結合橢圓參數(shù)關系求,即可得橢圓的方程;(2)設直線為,聯(lián)立拋物線整理成一元二次方程的形式,由求m的范圍,再應用韋達定理及弦長公式求關于m的表達式,根據(jù)二次函數(shù)性質求最值即可.小問1詳解】由題設,且,故,,則,所以橢圓的方程為.【小問2詳解】設直線為,聯(lián)立橢圓并整理得:,所以,可得,且,,所以且,故當時,.21、(1)證明見解析(2)證明見解析【解析】(1)由三角形的中位線定理可證得MN∥AB,再由線面垂直的判定定理可證得結論,(2)由已知可得AB⊥BC,VC⊥AC,再由已知結合面面垂直的性質定理可得VC⊥平面ABC,從而有AB⊥VC,然后由線面垂直的判定定理可證得結論【小問1詳解】證明:∵M,N分別為VA,VB的中點,∴MN∥AB,∵AB?平面CMN,MN?平面CMN,∴AB∥平面CMN【小問2詳解】證明:∵△ABC和△VAC均是等腰直角三角形,AB=BC,AC=CV,∴AB⊥BC,VC⊥AC,∵平面VAC⊥平面ABC,平面VAC∩平面ABC=AC,∴VC⊥平面ABC,∵AB?平面ABC,∴AB⊥VC,又VC∩BC=C,∴AB⊥平面VBC22、(1);(2)證明見解析.【解析】(1)根據(jù)題意,列出的方程組,通過解方程組,即可求出答案.(2)法一:設,,;當時,根據(jù)點的坐標寫出直線PA的方程,與橢圓方程聯(lián)立,可求出點的坐標;同理可求出點的坐標,然后即可求出直線EF的方程,從而證明直線EF過定點.法二:首先根據(jù)時直線EF的方程為,可判斷出直線EF過的定點M必在y軸上,設為;然后同方法一,求出點,的坐標,根據(jù),即可求出的值.【小問1詳解】由題意,知,解得,所以橢圓C的標準方程為【小問2詳解】法一:設,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度智能停車場車位代理銷售運營協(xié)議4篇
- 二零二四年度新能源汽車停車位購買及配套設施建設合同3篇
- 2025年生態(tài)停車場建筑工程包工與綠化配套合同2篇
- 2025-2031年中國功能性護膚品行業(yè)發(fā)展運行現(xiàn)狀及發(fā)展趨勢預測報告
- 2025年中國鋼結構行業(yè)市場發(fā)展監(jiān)測及投資潛力預測報告
- 二零二四年度醫(yī)療器械維修服務合同
- 2025年度叉車工操作安全責任叉車合同4篇
- 2025年中國管道完整性管理系統(tǒng)行業(yè)發(fā)展?jié)摿Ψ治黾巴顿Y戰(zhàn)略研究報告
- 2025年度鋁質室內(nèi)裝飾板材工程承包合同范本
- 2025年度鋁合金建筑模板租賃與回收利用合同3篇
- 中國成人暴發(fā)性心肌炎診斷和治療指南(2023版)解讀
- 新生兒低血糖課件
- 自動上下料機械手的設計研究
- 電化學儲能電站安全規(guī)程
- 幼兒園學習使用人民幣教案教案
- 2023年浙江省紹興市中考科學真題(解析版)
- 語言學概論全套教學課件
- 大數(shù)據(jù)與人工智能概論
- 《史記》上冊注音版
- 2018年湖北省武漢市中考數(shù)學試卷含解析
- 《腎臟的結構和功能》課件
評論
0/150
提交評論