2025屆安徽省舒城桃溪數(shù)學(xué)高一上期末聯(lián)考試題含解析_第1頁
2025屆安徽省舒城桃溪數(shù)學(xué)高一上期末聯(lián)考試題含解析_第2頁
2025屆安徽省舒城桃溪數(shù)學(xué)高一上期末聯(lián)考試題含解析_第3頁
2025屆安徽省舒城桃溪數(shù)學(xué)高一上期末聯(lián)考試題含解析_第4頁
2025屆安徽省舒城桃溪數(shù)學(xué)高一上期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆安徽省舒城桃溪數(shù)學(xué)高一上期末聯(lián)考試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.不等式的解集為()A.(-∞,1) B.(0,1)C.(,1) D.(1,+∞)2.點直線中,被圓截得的最長弦所在的直線方程為()A. B.C. D.3.已知,且,對任意的實數(shù),函數(shù)不可能A.是奇函數(shù) B.是偶函數(shù)C.既是奇函數(shù)又是偶函數(shù) D.既不是奇函數(shù)又不是偶函數(shù)4.已知函數(shù)函數(shù)有四個不同的零點,,,,且,則()A.1 B.2C.-1 D.5.從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),兩個數(shù)都是奇數(shù)概率是A. B.C. D.6.已知扇形的周長是6,圓心角為,則扇形的面積是()A.1 B.2C.3 D.47.函數(shù)的最小正周期為()A. B.C. D.8.已知函數(shù),在下列區(qū)間中,包含零點的區(qū)間是A. B.C. D.9.已知,那么()A. B.C. D.10.光線由點P(2,3)射到直線上,反射后過點Q(1,1),則反射光線所在的直線方程為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),是定義在區(qū)間上的奇函數(shù),則_________.12.若函數(shù)(,且)在上是減函數(shù),則實數(shù)的取值范圍是__________.13.冪函數(shù)的圖象經(jīng)過點,則________14.已知是定義在上的奇函數(shù),當(dāng)時,,函數(shù)如果對,,使得,則實數(shù)m的取值范圍為______15.已知甲、乙兩組數(shù)據(jù)已整理成如圖所示的莖葉圖,則甲組數(shù)據(jù)的中位數(shù)是___________,乙組數(shù)據(jù)的25%分位數(shù)是___________16.已知在上是增函數(shù),則的取值范圍是___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系中,已知角α的始邊為x軸的非負(fù)半軸,終邊經(jīng)過點P(-,)(Ⅰ)求cos(α-π)的值;(Ⅱ)若tanβ=2,求的值18.計算下列各式的值:(1),其中m,n均為正數(shù),為自然對數(shù)的底數(shù);(2),其中且19.若冪函數(shù)在其定義域上是增函數(shù).(1)求的解析式;(2)若,求的取值范圍.20.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)求函數(shù)在區(qū)間上的最大值和最小值.21.已知實數(shù)是定義在上的奇函數(shù).(1)求的值;(2)求函數(shù)的值域;(3)當(dāng)時,恒成立,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)對數(shù)的運算化簡不等式,然后求解可得.【詳解】因為,,所以原不等式等價于,即.故選:A2、A【解析】要使得直線被圓截得的弦長最長,則直線必過圓心,利用斜率公式求得斜率,結(jié)合點斜式方程,即可求解.【詳解】由題意,圓,可得圓心坐標(biāo)為,要使得直線被圓截得的弦長最長,則直線必過圓心,可得直線的斜率為,所以直線的方程為,即所求直線的方程為.故選:A.3、C【解析】,當(dāng)時,,為偶函數(shù)當(dāng)時,,為奇函數(shù)當(dāng)且時,既不奇函數(shù)又不是偶函數(shù)故選4、D【解析】將問題轉(zhuǎn)化為兩個函數(shù)圖象的交點問題,然后結(jié)合圖象即可解答.【詳解】有四個不同的零點,,,,即方程有四個不同的解的圖象如圖所示,由二次函數(shù)的對稱性,可得.因為,所以,故故選:D5、A【解析】從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12種其中滿足條件兩個數(shù)都是奇數(shù)的有(1,3),(3,1)兩種情況故從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),兩個數(shù)都是奇數(shù)的概率.故選A.6、B【解析】設(shè)扇形的半徑為r,弧長為l,先由周長求出半徑和弧長,即可求出扇形的面積.【詳解】設(shè)扇形的半徑為r,弧長為l,因為圓心角為,所以.因為扇形的周長是6,所以,解得:.所以扇形的面積是.故選:B7、C【解析】根據(jù)正弦型函數(shù)周期的求法即可得到答案.【詳解】故選:C.8、C【解析】因為,,所以由根的存在性定理可知:選C.考點:本小題主要考查函數(shù)的零點知識,正確理解零點定義及根的存在性定理是解答好本類題目的關(guān)鍵.9、C【解析】運用誘導(dǎo)公式即可化簡求值得解【詳解】,可得,那么故選:C10、A【解析】設(shè)點關(guān)于直線的對稱點為,則,解得,即對稱點為,則反射光線所在直線方程即:故選二、填空題:本大題共6小題,每小題5分,共30分。11、27【解析】由于奇函數(shù)的定義域必然關(guān)于原點對稱,可得m的值,再求【詳解】由于奇函數(shù)的定義域必然關(guān)于原點對稱∴m=3,故f(m)=故答案為27【點睛】本題主要考查函數(shù)的奇偶性,利用了奇函數(shù)的定義域必然關(guān)于原點對稱,屬于基礎(chǔ)題12、【解析】根據(jù)分段函數(shù)的單調(diào)性,列出式子,進(jìn)行求解即可.【詳解】由題可知:函數(shù)在上是減函數(shù)所以,即故答案為:13、【解析】設(shè)冪函數(shù)的解析式,然后代入求解析式,計算.【詳解】設(shè),則,解得,所以,得故答案為:14、【解析】先求出時,,,然后解不等式,即可求解,得到答案【詳解】由題意,可知時,為增函數(shù),所以,又是上的奇函數(shù),所以時,,又由在上的最大值為,所以,,使得,所以.故答案為【點睛】本題主要考查了函數(shù)的奇偶性的判定與應(yīng)用,以及函數(shù)的最值的應(yīng)用,其中解答中轉(zhuǎn)化為是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,推理與運算能力,屬于基礎(chǔ)題.15、①.45②.35【解析】利用中位數(shù)的概念及百分位數(shù)的概念即得.【詳解】由題可知甲組數(shù)據(jù)共9個數(shù),所以甲組數(shù)據(jù)的中位數(shù)是45,由莖葉圖可知乙組數(shù)據(jù)共9個數(shù),又,所以乙組數(shù)據(jù)的25%分位數(shù)是35.故答案為:45;35.16、【解析】將整理分段函數(shù)形式,由在上單調(diào)遞增,進(jìn)而可得,即可求解【詳解】由題,,顯然,在時,單調(diào)遞增,因為在上單調(diào)遞增,所以,即,故答案為:【點睛】本題考查已知函數(shù)單調(diào)性求參數(shù),考查分段函數(shù),考查一次函數(shù)的單調(diào)性的應(yīng)用三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(I);(II).【解析】由任意角三角函數(shù)的定義可得,,(Ⅰ)可求(Ⅱ)有,,利用誘導(dǎo)公式及同角基本關(guān)系即可化簡求解【詳解】解:由題意可得cosα=,sin,(Ⅰ)cos(α-π)=-cosα=,(Ⅱ)∵tanβ=2,tanα=,∴====【點睛】本題主要考查了三角函數(shù)的定義,同角基本關(guān)系的基本應(yīng)用,屬于基礎(chǔ)試題.18、(1)(2)【解析】(1)根據(jù)分?jǐn)?shù)指數(shù)冪的運算法則計算可得;(2)根據(jù)對數(shù)的性質(zhì)、換底公式及對數(shù)的運算法則計算可得;【小問1詳解】解:【小問2詳解】解:19、(1);(2)或.【解析】(1)根據(jù)冪函數(shù)的概念,以及冪函數(shù)單調(diào)性,求出,即可得出解析式;(2)根據(jù)函數(shù)單調(diào)性,將不等式化為,求解,即可得出結(jié)果.【詳解】(1)因為是冪函數(shù),所以,解得或,又是增函數(shù),即,,則;(2)因為為增函數(shù),所以由可得,解得或的取值范圍是或.20、(1),(2),【解析】(1)利用余弦函數(shù)的增減性列不等式可得答案;(2)先討論函數(shù)的增減區(qū)間,再結(jié)合所給角的范圍,可得最值.【小問1詳解】令,,可得,故的單調(diào)遞增區(qū)間為,.【小問2詳解】由(1)知當(dāng)時,在單調(diào)遞增,可得在單調(diào)遞減,而,從而在單調(diào)遞減,在單調(diào)遞增,故,.21、(1);(2);(3).【解析】(1)由是定義在上的奇函數(shù),利用可得的值;(2)化簡利用指數(shù)函數(shù)的值域以及不等式的性質(zhì)可得函數(shù)的值域;(3)應(yīng)用參數(shù)分離可得利用換元法可得,,轉(zhuǎn)化為,,轉(zhuǎn)化為求最值即可求解.【詳解】(1)因為是定義在上的奇函數(shù),所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論