版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省南昌市第八中學(xué)2025屆高二數(shù)學(xué)第一學(xué)期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“且”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知,且,則的最大值為()A. B.C. D.3.當(dāng)實(shí)數(shù),m變化時(shí),的最大值是()A.3 B.4C.5 D.64.已知函數(shù),則的值為()A. B.C.0 D.15.已知直線與平行,則的值為()A. B.C. D.6.如圖在平行六面體中,與的交點(diǎn)記為.設(shè),,,則下列向量中與相等的向量是()A. B.C. D.7.設(shè)是雙曲線的一個(gè)焦點(diǎn),,是的兩個(gè)頂點(diǎn),上存在一點(diǎn),使得與以為直徑的圓相切于,且是線段的中點(diǎn),則的漸近線方程為A. B.C. D.8.已知拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則拋物線的準(zhǔn)線方程為()A. B.C. D.9.某高校甲、乙兩位同學(xué)大學(xué)四年選修課程的考試成績等級(選修課的成績等級分為1,2,3,4,5,共五個(gè)等級)的條形圖如圖所示,則甲成績等級的中位數(shù)與乙成績等級的眾數(shù)分別是()A.3,5 B.3,3C.3.5,5 D.3.5,410.青花瓷是中華陶瓷燒制工藝的珍品,也是中國瓷器的主流品種之一.如圖,是一青花瓷花瓶,其外形上下對稱,可看成是雙曲線的一部分繞其虛軸旋轉(zhuǎn)所形成的曲面.若該花瓶的瓶口直徑為瓶身最小直徑的2倍,花瓶恰好能放入與其等高的正方體包裝箱內(nèi),則雙曲線的離心率為()A. B.C. D.11.在正方體ABCD-A1B1C1D1中,棱長為a,M,N分別為A1B和AC上的點(diǎn),A1M=AN=,則MN與平面BB1C1C的位置關(guān)系是()A.相交 B.平行C.垂直 D.不能確定12.“”是“直線與直線互相垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.某校對全校共1800名學(xué)生進(jìn)行健康調(diào)查,選用分層抽樣法抽取一個(gè)容量為200的樣本,已知女生比男生少抽了20人,則該校的女生人數(shù)應(yīng)是__________人.14.中國古代《易經(jīng)》一書中記載,人們通過在繩子上打結(jié)來記錄數(shù)量,即“結(jié)繩計(jì)數(shù)”,如圖,一位古人在從右到左依次排列的紅繩子上打結(jié),滿三進(jìn)一,用來記錄每年進(jìn)的錢數(shù).由圖可得,這位古人一年的收入的錢數(shù)為___________.15.已知橢圓的左、右頂點(diǎn)分別為A,B,橢圓C的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)為橢圓C的下頂點(diǎn),直線MA與MB的斜率之積為.(1)求橢圓C的方程;(2)設(shè)點(diǎn)P,Q為橢圓C上位于x軸下方的兩點(diǎn),且,求四邊形面積的最大值.16.已知點(diǎn)P是拋物線上一個(gè)動點(diǎn),則點(diǎn)P到點(diǎn)M(0,2)的距離與點(diǎn)P到該拋物線準(zhǔn)線的距離之和的最小值為______________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標(biāo)系中,曲線與坐標(biāo)軸交點(diǎn)都在圓上.(1)求圓的方程;(2)圓與直線交于,兩點(diǎn),在圓上是否存在一點(diǎn),使得四邊形為菱形?若存在,求出此時(shí)直線的方程;若不存在,說明理由.18.(12分)已知圓O:與圓C:(1)在①,②這兩個(gè)條件中任選一個(gè),填在下面的橫線上,并解答若______,判斷這兩個(gè)圓的位置關(guān)系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個(gè)條件分別作答,按第一個(gè)作答計(jì)分19.(12分)已知函數(shù).(I)若曲線在點(diǎn)處的切線方程為,求的值;(II)若,求的單調(diào)區(qū)間.20.(12分)在平面直角坐標(biāo)系xOy中,點(diǎn)A(2,4),直線l:,設(shè)圓C的半徑為1,圓心在直線l上,圓心也在直線上.(1)求圓C的方程;(2)過點(diǎn)A作圓C的切線,求切線的方程.21.(12分)已知數(shù)列的前項(xiàng)和為,且,(1)求的通項(xiàng)公式;(2)求的最小值22.(10分)已知集合,(1)若,求m的取值范圍;(2)若“x∈B”是“x∈A”的充分不必要條件,求m的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】按照充分必要條件的判斷方法判斷,“且”能否推出“”,以及“”能否推出“且”,判斷得到正確答案,【詳解】當(dāng)且時(shí),成立,反過來,當(dāng)時(shí),例:,不能推出且.所以“且”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題考查充分不必要條件的判斷,重點(diǎn)考查基本判斷方法,屬于基礎(chǔ)題型.2、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當(dāng)且僅當(dāng)時(shí)取等號),的最大值為.故選:A.3、D【解析】根據(jù)點(diǎn)到直線的距離公式可知可以表示單位圓上點(diǎn)到直線的距離,利用圓的性質(zhì)結(jié)合圖形即得.【詳解】由題可知,可以表示單位圓上點(diǎn)到直線的距離,設(shè),因直線,即表示恒過定點(diǎn),根據(jù)圓的性質(zhì)可得.故選:D.4、B【解析】對函數(shù)求導(dǎo),然后將代入導(dǎo)數(shù)中可得結(jié)果.【詳解】,則,則,故選:B5、C【解析】由兩直線平行可得,即可求出答案.【詳解】直線與平行故選:C.6、B【解析】利用空間向量的加法和減法法則可得出關(guān)于、、的表達(dá)式.【詳解】故選:B.7、C【解析】根據(jù)圖形的幾何特性轉(zhuǎn)化成雙曲線的之間的關(guān)系求解.【詳解】設(shè)另一焦點(diǎn)為,連接,由于是圓的切線,則,且,又是的中點(diǎn),則是的中位線,則,且,由雙曲線定義可知,由勾股定理知,,,即,漸近線方程為,所以漸近線方程為故選C.【點(diǎn)睛】本題考查雙曲線的簡單的幾何性質(zhì),屬于中檔題.8、C【解析】先求出橢圓的右焦點(diǎn),從而可求拋物線的準(zhǔn)線方程.【詳解】,橢圓右焦點(diǎn)坐標(biāo)為,故拋物線的準(zhǔn)線方程為,故選:C.【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),一般地,如果拋物線的方程為,則拋物線的焦點(diǎn)的坐標(biāo)為,準(zhǔn)線方程為,本題屬于基礎(chǔ)題.9、C【解析】將甲的所有選修課等級從低到高排列可得甲的中位數(shù),由圖可知乙的選修課等級的眾數(shù).【詳解】由條形圖可得,甲同學(xué)共有10門選修課,將這10門選修課的成績等級從低到高排序后,第5,6門的成績等級分別為3,4,故中位數(shù)為,乙成績等級的眾數(shù)為5.故選:C.10、C【解析】由題意作出軸截面,最短直徑為2a,根據(jù)已知條件點(diǎn)(2a,2a)在雙曲線上,代入雙曲線的標(biāo)準(zhǔn)方程,結(jié)合a,b,c的關(guān)系可求得離心率e的值【詳解】由題意作出軸截面如圖:M點(diǎn)是雙曲線與截面正方形的交點(diǎn)之一,設(shè)雙曲線的方程為:最短瓶口直徑為A1A2=2a,則由已知可得M是雙曲線上的點(diǎn),且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化簡后得,解得故選:C11、B【解析】建立空間直角坐標(biāo)系,求得平面BB1C1C的法向量和直線MN的方向向量,利用兩向量垂直,得到線面平行.【詳解】建立如圖所示的空間直角坐標(biāo)系,由圖可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故選:B.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識點(diǎn)有利于空間向量判斷線面平行,屬于簡單題目.12、A【解析】根據(jù)直線垂直求出的范圍即可得出.【詳解】由直線垂直可得,解得或1,所以“”是“直線與直線互相垂直”的充分不必要條件.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、810【解析】分析:首先確定抽取的女生人數(shù),然后由分層抽樣比即可確定女生的人數(shù).詳解:設(shè)抽取的女生人數(shù)為,則:,解得:,則抽取的女生人數(shù)為人,抽取的男生人數(shù)為人,據(jù)此可知該校女生人數(shù)應(yīng)是人.點(diǎn)睛:進(jìn)行分層抽樣的相關(guān)計(jì)算時(shí),常利用以下關(guān)系式巧解:(1);(2)總體中某兩層的個(gè)體數(shù)之比=樣本中這兩層抽取的個(gè)體數(shù)之比14、25【解析】將原問題轉(zhuǎn)化為三進(jìn)制計(jì)算,即可求解【詳解】解:由題意可得,從左到右的數(shù)字依次為221,即古人一年的收入的錢數(shù)為故答案為:15、(1)(2)【解析】(1)由斜率之積求得,再由已知條件得,從而得橢圓方程;(2)延長QF2交橢圓于N點(diǎn),連接,,設(shè)直線,,.直線方程代入橢圓方程,應(yīng)用韋達(dá)定理得,結(jié)合不等式的性質(zhì)、函數(shù)的單調(diào)性可得的范圍,再計(jì)算出四邊形面積得結(jié)論【小問1詳解】由題知:,,,又,∴橢圓.【小問2詳解】延長QF2交橢圓于N點(diǎn),連接,,如下圖所示:,∴設(shè)直線,,.由,得,,,.,由勾形函數(shù)的單調(diào)性得,根據(jù)對稱性得:,且,,∴四邊形面積的最大值為.16、【解析】由拋物線的定義得:,所以,當(dāng)三點(diǎn)共線時(shí),最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當(dāng)三點(diǎn)共線時(shí),最小,.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,直線方程為或.【解析】(1)利用待定系數(shù)法即求;(2)利用直線與圓的位置關(guān)系可得,然后利用菱形的性質(zhì)可得圓心到直線的距離,即得.【小問1詳解】曲線與軸的交點(diǎn)為,與軸的交點(diǎn)為,,設(shè)圓的方程為,則,解得.∴圓的方程為;【小問2詳解】∵圓與直線交于,兩點(diǎn),圓化為,圓心坐標(biāo)為,半徑為.∴圓心到直線的距離,解得.假設(shè)存在點(diǎn),使得四邊形為菱形,則與互相平分,∴圓心到直線的距離,即,解得,經(jīng)驗(yàn)證滿足條件.∴存在點(diǎn),使得四邊形為菱形,此時(shí)的直線方程為或.18、(1)選①:外離;選②:相切;(2)【解析】(1)不論選①還是選②,都要首先算出兩圓的圓心距,然后和兩圓的半徑之和或差進(jìn)行比較即可;(2)根據(jù)點(diǎn)到直線的距離公式,先計(jì)算圓心到直線的距離,然后利用圓心距、半徑、弦長的一半之間的關(guān)系求解.【小問1詳解】選①圓O的圓心為,半徑為l;圓C的圓心為,半徑為因?yàn)閮蓤A的圓心距為,且兩圓的半徑之和為,所以兩圓外離選②圓O的圓心為,半徑為1.圓C的圓心為,半徑為2因?yàn)閮蓤A的圓心距為.且兩圓的半徑之和為,所以兩圓外切【小問2詳解】因?yàn)辄c(diǎn)C到直線的距離,所以直線被圓C截得的弦長為19、(Ⅰ)(Ⅱ)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【解析】(Ⅰ)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意可得得到關(guān)于的方程組,解得;(Ⅱ)求出函數(shù)的導(dǎo)函數(shù),解得函數(shù)的單調(diào)遞增區(qū)間,解得函數(shù)的單調(diào)遞減區(qū)間.【詳解】解:(Ⅰ)因?yàn)楹瘮?shù)在點(diǎn)處的切線方程為解得(Ⅱ)令,得或.因?yàn)?所以時(shí),;時(shí),.故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于基礎(chǔ)題.20、(1)(2)或【解析】(1)直接求出圓心的坐標(biāo),寫出圓的方程;(2)分斜率存在和斜率不存在進(jìn)行分類討論,利用幾何法列方程,即可求解.【小問1詳解】由圓心C在直線l:上可設(shè):點(diǎn),又C也在直線上,∴,∴又圓C的半徑為1,∴圓C的方程為.【小問2詳解】當(dāng)直線垂直于x軸時(shí),與圓C相切,此時(shí)直線方程為.當(dāng)直線與x軸不垂直時(shí),設(shè)過A點(diǎn)的切線方程為,即,則,解得.此時(shí)切線方程,.綜上所述,所求切線為或21、(1)(2)【解析】(1)由可求得的值,由可求得數(shù)列的通項(xiàng)公式;(2)求得,利用二次函數(shù)的基本性質(zhì)可求得的最小值.【小問1詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 少兒國際跳棋課程設(shè)計(jì)
- 打字機(jī)鉛字用清潔液相關(guān)項(xiàng)目建議書
- 圖書館書架項(xiàng)目可行性實(shí)施報(bào)告
- 無線電話項(xiàng)目評價(jià)分析報(bào)告
- 2024年ITO靶材項(xiàng)目規(guī)劃申請報(bào)告模范
- 氣壓帶風(fēng)帶課程設(shè)計(jì)
- 2024年印刷用品及器材項(xiàng)目提案報(bào)告模范
- 2024年寄生蟲病防治獸藥項(xiàng)目申請報(bào)告模范
- 簡單商業(yè)插畫課程設(shè)計(jì)
- 2023年北京通州區(qū)九年級下學(xué)期一模語文試題及答案
- 24春國家開放大學(xué)《機(jī)電一體化系統(tǒng)綜合實(shí)訓(xùn)》大作業(yè)參考答案
- 小學(xué)托管教學(xué)工作計(jì)劃
- 家長會課件:小學(xué)三年級家長會 課件
- 文創(chuàng)產(chǎn)品設(shè)計(jì)方案(2篇)
- 2024年景區(qū)托管運(yùn)營合作協(xié)議
- SMW工法樁施工課件
- MOOC 學(xué)術(shù)英語進(jìn)階-北京科技大學(xué) 中國大學(xué)慕課答案
- 2024年4月自考05755衛(wèi)生統(tǒng)計(jì)學(xué)答案及評分參考
- 2023年政府采購評審專家考試題庫
- DL《水電站泄水建筑物水力安全評價(jià)導(dǎo)則》
- 《高一學(xué)期期中考試動員》主題班會課件
評論
0/150
提交評論