版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
甘肅省白銀市九中2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如果,那么下列不等式成立的是()A. B.C. D.2.下列說法中正確的是()A.棱柱的側(cè)面可以是三角形B.棱臺(tái)的所有側(cè)棱延長(zhǎng)后交于一點(diǎn)C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長(zhǎng)都相等3.已知雙曲線的焦距為,且雙曲線的一條漸近線與直線平行,則雙曲線的方程為()A. B.C. D.4.阿基米德曾說過:“給我一個(gè)支點(diǎn),我就能撬動(dòng)地球”.他在做數(shù)學(xué)研究時(shí),有一個(gè)有趣的問題:一個(gè)邊長(zhǎng)為2的正方形內(nèi)部挖了一個(gè)內(nèi)切圓,現(xiàn)在以該內(nèi)切圓的圓心且平行于正方形的一邊的直線為軸旋轉(zhuǎn)一周形成幾何體,則該旋轉(zhuǎn)體的體積為()A. B.C. D.5.下圖是一個(gè)“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉(zhuǎn)時(shí)形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側(cè)的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點(diǎn)A與點(diǎn)C,點(diǎn)B與點(diǎn)D均關(guān)于該雙曲線的對(duì)稱中心對(duì)稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm6.如圖是正方體的平面展開圖,在這個(gè)正方體中①與平行;②與是異面直線;③與成60°角;④與是異面直線以上四個(gè)結(jié)論中,正確結(jié)論的序號(hào)是A.①②③ B.②④C.③④ D.②③④7.經(jīng)過點(diǎn)且與直線垂直的直線方程為()A. B.C. D.8.若圓與圓外切,則()A. B.C. D.9.已知函數(shù),則函數(shù)在點(diǎn)處的切線方程為()A. B.C. D.10.已知直線過點(diǎn),,則該直線的傾斜角是()A. B.C. D.11.某中學(xué)高一年級(jí)有200名學(xué)生,高二年級(jí)有260名學(xué)生,高三年級(jí)有340名學(xué)生,為了了解該校高中學(xué)生完成作業(yè)情況,現(xiàn)用分層抽樣的方法抽取一個(gè)容量為40的樣本,則高二年級(jí)抽取的人數(shù)為()A.10 B.13C.17 D.2612.已知命題,;命題,,那么下列命題為假命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若不同的平面的一個(gè)法向量分別為,,則與的位置關(guān)系為___________.14.若兩定點(diǎn)A,B的距離為3,動(dòng)點(diǎn)M滿足,則M點(diǎn)的軌跡圍成區(qū)域的面積為_________15.設(shè)、、是三個(gè)不同的平面,、是兩條不同的直線,給出下列三個(gè)結(jié)論:①若,,則;②若,,則;③若,,則其中,正確結(jié)論的序號(hào)為__16.已知直線與圓交于A,B兩點(diǎn),過A,B分別做l的垂線與x軸交于C,D兩點(diǎn),若|AB|=4,則|CD|=_____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,直線(1)求證:直線與圓恒有兩個(gè)交點(diǎn);(2)設(shè)直線與圓的兩個(gè)交點(diǎn)為、,求的取值范圍18.(12分)如圖,五邊形為東京奧運(yùn)會(huì)公路自行車比賽賽道平面設(shè)計(jì)圖,根據(jù)比賽需要,在賽道設(shè)計(jì)時(shí)需預(yù)留出,兩條服務(wù)通道(不考慮寬度),,,,,為賽道.現(xiàn)已知,,千米,千米(1)求服務(wù)通道的長(zhǎng)(2)在上述條件下,如何設(shè)計(jì)才能使折線賽道(即)的長(zhǎng)度最大,并求最大值19.(12分)已知函數(shù)的圖象在點(diǎn)P(0,f(0))處的切線方程是(1)求a、b的值;(2)求函數(shù)的極值.20.(12分)甲、乙等6個(gè)班級(jí)參加學(xué)校組織廣播操比賽,若采用抽簽的方式隨機(jī)確定各班級(jí)的出場(chǎng)順序(序號(hào)為1,2,…,6),求:(1)甲、乙兩班級(jí)的出場(chǎng)序號(hào)中至少有一個(gè)為奇數(shù)的概率;(2)甲、乙兩班級(jí)之間的演出班級(jí)(不含甲乙)個(gè)數(shù)X的分布列與期望21.(12分)已知空間內(nèi)不重合的四點(diǎn)A,B,C,D的坐標(biāo)分別為,,,,且(1)求k,t的值;(2)求點(diǎn)B到直線CD的距離22.(10分)已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為,離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)O為坐標(biāo)原點(diǎn),點(diǎn)P在橢圓C上,若的面積為,求點(diǎn)P的坐標(biāo)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用不等式的性質(zhì)分析判斷每個(gè)選項(xiàng).【詳解】由不等式的性質(zhì)可知,因?yàn)?,所以,,故A錯(cuò)誤,D正確;由,可得,,故B,C錯(cuò)誤.故選:D2、B【解析】根據(jù)棱柱、棱臺(tái)、球、正棱錐結(jié)構(gòu)特征依次判斷選項(xiàng)即可.【詳解】棱柱的側(cè)面都是平行四邊形,A不正確;棱臺(tái)是由對(duì)應(yīng)的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長(zhǎng)并不是都相等,應(yīng)該為正棱錐的側(cè)棱長(zhǎng)都相等,所以D不正確.故選:B.3、B【解析】根據(jù)焦點(diǎn)在x軸上的雙曲線漸近線斜率為±可求a,b關(guān)系,再結(jié)合a,b,c關(guān)系即可求解﹒【詳解】∵雙曲線1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴雙曲線的方程為故選:B4、B【解析】根據(jù)題意,結(jié)合圓柱和球的體積公式進(jìn)行求解即可.【詳解】由題意可知:該旋轉(zhuǎn)體的體積等于底面半徑為,高為的圓柱的體積減去半徑為的球的體積,即,故選:B5、B【解析】由離心率求出雙曲線方程,由對(duì)稱性設(shè)出點(diǎn)A,B,D坐標(biāo),求出坐標(biāo),求出答案.【詳解】由題意得:,解得:,因?yàn)殡x心率,所以,,故雙曲線方程為,設(shè),則,,則,所以,則,解得:,故.故選:B6、C【解析】根據(jù)平面展開圖可得原正方體,根據(jù)各點(diǎn)的分布逐項(xiàng)判斷可得正確的選項(xiàng).【詳解】由平面展開圖可得原正方體如圖所示:由圖可得:為異面直線,與不是異面直線,是異面直線,故①②錯(cuò)誤,④正確.連接,則為等邊三角形,而,故或其補(bǔ)角為與所成的角,因?yàn)?,故與所成的角為,故③正確.綜上,正確命題的序號(hào)為:③④.故選:C.【點(diǎn)睛】本題考查正方體的平面展開圖,注意展開圖中的點(diǎn)與正方體中的頂點(diǎn)的對(duì)應(yīng)關(guān)系,本題屬于容易題.7、A【解析】根據(jù)點(diǎn)斜式求得正確答案.【詳解】直線的斜率為,經(jīng)過點(diǎn)且與直線垂直的直線方程為,即.故選:A8、C【解析】求得兩圓的圓心坐標(biāo)和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因?yàn)閮蓤A相外切,可得,解得故選:C.9、C【解析】依據(jù)導(dǎo)數(shù)幾何意義去求函數(shù)在點(diǎn)處的切線方程即可解決.【詳解】則,又則函數(shù)在點(diǎn)處的切線方程為,即故選:C10、C【解析】根據(jù)直線的斜率公式即可求得答案.【詳解】設(shè)該直線的傾斜角為,該直線的斜率,即.故選:C11、B【解析】計(jì)算出抽樣比可得答案.【詳解】該校高中學(xué)生共有名,所以高二年級(jí)抽取的人數(shù)名.故選:B.12、B【解析】由題設(shè)命題的描述判斷、的真假,再判斷其復(fù)合命題的真假即可.【詳解】對(duì)于命題,僅當(dāng)時(shí),故為假命題;對(duì)于命題,由且開口向上,故為真命題;所以為真命題,為假命題,綜上,為真,為假,為真,為真.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、平行【解析】根據(jù)題意得到,得出,即可得到平面與的位置關(guān)系.【詳解】由題意,平面的一個(gè)法向量分別為,,可得,所以,所以,即平面與的位置關(guān)系為平行.故答案為:平行14、【解析】建立如圖直角坐標(biāo)系,設(shè)點(diǎn),根據(jù)題意和兩點(diǎn)坐標(biāo)求距離公式可得,結(jié)合圓的面積公式計(jì)算即可.【詳解】以點(diǎn)A為坐標(biāo)原點(diǎn),射線AB為x軸的非負(fù)半軸建立直角坐標(biāo)系,如圖,設(shè)點(diǎn),則,由,化簡(jiǎn)并整理得:,于是得點(diǎn)M軌跡是以點(diǎn)為圓心,2為半徑的圓,其面積為,所以M點(diǎn)的軌跡圍成區(qū)域的面積為.故答案為:15、①②【解析】利用線面垂直的性質(zhì)可判斷命題①、②的正誤;利用特例法可判斷命題③的正誤.綜合可得出結(jié)論.【詳解】、、是三個(gè)不同的平面,、是兩條不同的直線.對(duì)于①,若,,由同垂直于同一平面的兩直線平行,可得,故①正確;對(duì)于②,若,,由同垂直于同一直線的兩平面平行,可得,故②正確;對(duì)于③,若,,考慮墻角處的三個(gè)平面兩兩垂直,可判斷、相交,則不正確故答案為:①②【點(diǎn)睛】本題考查空間中線面、面面位置關(guān)系有關(guān)命題真假的判斷,考查推理能力,屬于基礎(chǔ)題.16、【解析】先求出圓心和半徑,由于半徑為2,弦|AB|=4,所以可知直線過圓心,從而得,求出,得到直線方程且傾斜角為135°,進(jìn)而可求出|CD|【詳解】圓,圓心(1,2),半徑r=2,∵|AB|=4,∴直線過圓心(1,2),∴,∴,∴直線,傾斜角為135°,∵過A,B分別做l的垂線與x軸交于C,D兩點(diǎn),∴.故答案為:4【點(diǎn)睛】此題考查直線與圓的位置關(guān)系,考查兩直線的位置關(guān)系,考查轉(zhuǎn)化思想和計(jì)算能力,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)直線的方程可得直線經(jīng)過定點(diǎn),而點(diǎn)到圓心的距離小于半徑,故點(diǎn)在圓的內(nèi)部,由此即可證明結(jié)果(2)由圓的性質(zhì)可知,當(dāng)過圓心時(shí),取最大值,當(dāng)和過的直徑垂直時(shí),取最小值,由此即可求出結(jié)果.【小問1詳解】證明:由于直線,即令,解得,所以恒過點(diǎn),所以,所以點(diǎn)在圓內(nèi),所以直線與圓恒有兩個(gè)交點(diǎn);【小問2詳解】解:當(dāng)過圓心時(shí),取最大值,即圓的直徑,由圓的半徑,所以的最大值為;當(dāng)和過的直徑垂直時(shí),取最小值,此時(shí)圓心到的距離,所以,故的最小值為綜上,的取值范圍.18、(1)服務(wù)通道的長(zhǎng)為千米(2)時(shí),折線賽道的長(zhǎng)度最大,最大值為千米【解析】(1)先在中利用正弦定理得到長(zhǎng)度,再在中,利用余弦定理得到即可;(2)在中利用余弦定理得到,再根據(jù)基本等式求解最值即可.【小問1詳解】在中,由正弦定理得:,在中,由余弦定理,得,即解得或(負(fù)值舍去)所以服務(wù)通道的長(zhǎng)為千米【小問2詳解】在中,由余弦定理得:,即,所以因?yàn)?,所以,所以,即(?dāng)且僅當(dāng)時(shí)取等號(hào))即當(dāng)時(shí),折線賽道的長(zhǎng)度最大,最大值為千米19、(1);(2)答案見解析【解析】(1)求出曲線的斜率,切點(diǎn)坐標(biāo),求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)函數(shù)值域斜率的關(guān)系,即可求出,(2)求出導(dǎo)函數(shù)的符號(hào),判斷函數(shù)的單調(diào)性即可得到函數(shù)的極值【詳解】(1)因?yàn)楹瘮?shù)的圖象在點(diǎn)P(0,f(0))處的切線方程是,所以切線斜率是,且,求得,即點(diǎn)又函數(shù),則所以依題意得解得(2)由(1)知所以令,解得或當(dāng),或;當(dāng),所以函數(shù)的單調(diào)遞增區(qū)間是,,單調(diào)遞減區(qū)間是所以當(dāng)變化時(shí),和變化情況如下表:0極大值極小值所以,20、(1)(2)X01234p期望為.【解析】(1)求出甲、乙兩班級(jí)的出場(chǎng)序號(hào)中均為偶數(shù)的概率,進(jìn)而求出答案;(2)求出X的可能取值及相應(yīng)的概率,寫出分布列,求出期望值.【小問1詳解】由題意得:甲、乙兩班級(jí)的出場(chǎng)序號(hào)中均為偶數(shù)的概率為,故甲、乙兩班級(jí)的出場(chǎng)序號(hào)中至少有一個(gè)為奇數(shù)的概率;【小問2詳解】X的可能取值為0,1,2,3,4,,,,故分布列為:X01234p數(shù)學(xué)期望為21、(1),(2)【解析】(1)由,可得存在唯一實(shí)數(shù),使得,列出方程組,解之即可得解;(2)設(shè)直線與
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智慧城市廠房委托出租與城市管理服務(wù)合同3篇
- 2025年度紡織行業(yè)供應(yīng)鏈金融服務(wù)合同范本3篇
- 二零二四年養(yǎng)老院活動(dòng)指導(dǎo)員聘用合同(老年文化活動(dòng)策劃與執(zhí)行)3篇
- 二零二五版安保服務(wù)合同糾紛處理?xiàng)l款3篇
- 二零二四年度“石油化工”項(xiàng)目投資合同
- 二零二五年度疫情期間電子商務(wù)平臺(tái)運(yùn)營(yíng)與推廣合同3篇
- 2024注冊(cè)不良資產(chǎn)處置公司協(xié)議轉(zhuǎn)讓
- 2024版用房產(chǎn)抵押借款合同
- 2025年度玫瑰花采摘與加工服務(wù)外包合同4篇
- 年度高壓液壓閥產(chǎn)業(yè)分析報(bào)告
- T-SDLPA 0001-2024 研究型病房建設(shè)和配置標(biāo)準(zhǔn)
- (人教PEP2024版)英語(yǔ)一年級(jí)上冊(cè)Unit 1 教學(xué)課件(新教材)
- 全國(guó)職業(yè)院校技能大賽高職組(市政管線(道)數(shù)字化施工賽項(xiàng))考試題庫(kù)(含答案)
- 2024胃腸間質(zhì)瘤(GIST)診療指南更新解讀 2
- 光儲(chǔ)電站儲(chǔ)能系統(tǒng)調(diào)試方案
- 2024年二級(jí)建造師繼續(xù)教育題庫(kù)及答案(500題)
- 小學(xué)數(shù)學(xué)二年級(jí)100以內(nèi)連加連減口算題
- 建設(shè)單位如何做好項(xiàng)目管理
- 三年級(jí)上遞等式計(jì)算400題
- 一次性餐具配送投標(biāo)方案
- 《中華民族多元一體格局》
評(píng)論
0/150
提交評(píng)論