版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年山西省太原市第十二中學(xué)高三總復(fù)習(xí)質(zhì)量測試(二)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)在上有兩個零點(diǎn),則的取值范圍是()A. B. C. D.2.設(shè)集合,,若,則()A. B. C. D.3.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果為()A. B.6 C. D.4.函數(shù)的大致圖像為()A. B.C. D.5.造紙術(shù)、印刷術(shù)、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學(xué)家艾約瑟提出并為后來許多中國的歷史學(xué)家所繼承,普遍認(rèn)為這四種發(fā)明對中國古代的政治,經(jīng)濟(jì),文化的發(fā)展產(chǎn)生了巨大的推動作用.某小學(xué)三年級共有學(xué)生500名,隨機(jī)抽查100名學(xué)生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計(jì)該校三級的500名學(xué)生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人6.若等差數(shù)列的前項(xiàng)和為,且,,則的值為().A.21 B.63 C.13 D.847.正三棱錐底面邊長為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.8.在一個數(shù)列中,如果,都有(為常數(shù)),那么這個數(shù)列叫做等積數(shù)列,叫做這個數(shù)列的公積.已知數(shù)列是等積數(shù)列,且,,公積為,則()A. B. C. D.9.已知是等差數(shù)列的前項(xiàng)和,,,則()A.85 B. C.35 D.10.如圖,在平行四邊形中,對角線與交于點(diǎn),且,則()A. B.C. D.11.過拋物線的焦點(diǎn)作直線與拋物線在第一象限交于點(diǎn)A,與準(zhǔn)線在第三象限交于點(diǎn)B,過點(diǎn)作準(zhǔn)線的垂線,垂足為.若,則()A. B. C. D.12.函數(shù)的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)若關(guān)于的不等式的解集是,則的值為_____.14.若展開式中的常數(shù)項(xiàng)為240,則實(shí)數(shù)的值為________.15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,則a1=_____,a1+a2+…+a5=____16.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求直線和曲線的極坐標(biāo)方程;(2)在極坐標(biāo)系中,已知點(diǎn)是射線與直線的公共點(diǎn),點(diǎn)是與曲線的公共點(diǎn),求的最大值.18.(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點(diǎn)N到平面CDM的距離.19.(12分)橢圓:的離心率為,點(diǎn)為橢圓上的一點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若斜率為的直線過點(diǎn),且與橢圓交于兩點(diǎn),為橢圓的下頂點(diǎn),求證:對于任意的實(shí)數(shù),直線的斜率之積為定值.20.(12分)已知是公比為的無窮等比數(shù)列,其前項(xiàng)和為,滿足,________.是否存在正整數(shù),使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個條件中任選一個,補(bǔ)充在上面問題中并作答.21.(12分)已知直線過橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,(1)求橢圓的方程;(2)過原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于C,D兩點(diǎn),求四邊形面積的最大值.22.(10分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(Ⅰ)設(shè)直線與曲線交于,兩點(diǎn),求;(Ⅱ)若點(diǎn)為曲線上任意一點(diǎn),求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
對函數(shù)求導(dǎo),對a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時,,在上單調(diào)遞增,不合題意.當(dāng)時,,在上單調(diào)遞減,也不合題意.當(dāng)時,則時,,在上單調(diào)遞減,時,,在上單調(diào)遞增,又,所以在上有兩個零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問題,考查了函數(shù)的單調(diào)性及極值問題,屬于中檔題.2.A【解析】
根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.【點(diǎn)睛】本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.3.D【解析】
用列舉法,通過循環(huán)過程直接得出與的值,得到時退出循環(huán),即可求得.【詳解】執(zhí)行程序框圖,可得,,滿足條件,,,滿足條件,,,滿足條件,,,由題意,此時應(yīng)該不滿足條件,退出循環(huán),輸出S的值為.故選D.【點(diǎn)睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到的與的值是解題的關(guān)鍵,難度較易.4.D【解析】
通過取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)?,?dāng)時,,排除B和C;當(dāng)時,,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.5.D【解析】
先求得名學(xué)生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學(xué)生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學(xué)生中,只能說出一種或一種也說不出的有人,設(shè)對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點(diǎn)睛】本小題主要考查利用樣本估計(jì)總體,屬于基礎(chǔ)題.6.B【解析】
由已知結(jié)合等差數(shù)列的通項(xiàng)公式及求和公式可求,,然后結(jié)合等差數(shù)列的求和公式即可求解.【詳解】解:因?yàn)?,,所以,解可得,,,則.故選:B.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式及求和公式的簡單應(yīng)用,屬于基礎(chǔ)題.7.D【解析】
由側(cè)棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.8.B【解析】
計(jì)算出的值,推導(dǎo)出,再由,結(jié)合數(shù)列的周期性可求得數(shù)列的前項(xiàng)和.【詳解】由題意可知,則對任意的,,則,,由,得,,,,因此,.故選:B.【點(diǎn)睛】本題考查數(shù)列求和,考查了數(shù)列的新定義,推導(dǎo)出數(shù)列的周期性是解答的關(guān)鍵,考查推理能力與計(jì)算能力,屬于中等題.9.B【解析】
將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,,,.故選:B【點(diǎn)睛】本小題主要考查等差數(shù)列通項(xiàng)公式的基本量計(jì)算,考查等差數(shù)列前項(xiàng)和的計(jì)算,屬于基礎(chǔ)題.10.C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.11.C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作.由拋物線定義知,所以,,,,所以.故選:C【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題12.A【解析】
用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【詳解】因?yàn)?所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故可以排除;因?yàn)?故排除,因?yàn)橛蓤D象知,排除.故選:A【點(diǎn)睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意可知的兩根為,再根據(jù)解集的區(qū)間端點(diǎn)得出參數(shù)的關(guān)系,再求解即可.【詳解】解:因?yàn)楹瘮?shù),關(guān)于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【點(diǎn)睛】本題主要考查了不等式的解集與參數(shù)之間的關(guān)系,屬于基礎(chǔ)題.14.-3【解析】
依題意可得二項(xiàng)式展開式的常數(shù)項(xiàng)為即可得到方程,解得即可;【詳解】解:∵二項(xiàng)式的展開式中的常數(shù)項(xiàng)為,∴解得.故答案為:【點(diǎn)睛】本題考查二項(xiàng)式展開式中常數(shù)項(xiàng)的計(jì)算,屬于基礎(chǔ)題.15.80211【解析】
由,利用二項(xiàng)式定理即可得,分別令、后,作差即可得.【詳解】由題意,則,令,得,令,得,故.故答案為:80,211.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,屬于中檔題.16.【解析】
先求角,再用余弦定理找到邊的關(guān)系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點(diǎn)睛】考查正余弦定理、基本不等式的應(yīng)用以及三條線段構(gòu)成三角形的條件;基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),;(2)【解析】
(1)先將直線l和圓C的參數(shù)方程化成普通方程,再分別求出極坐標(biāo)方程;(2)寫出點(diǎn)M和點(diǎn)N的極坐標(biāo),根據(jù)極徑的定義分別表示出和,利用三角函數(shù)的性質(zhì)求出的最大值.【詳解】解:(1),,即極坐標(biāo)方程為,,極坐標(biāo)方程.(2)由題可知,,當(dāng)時,.【點(diǎn)睛】本題考查了參數(shù)方程、普通方程和極坐標(biāo)方程的互化問題,極徑的定義,以及三角函數(shù)的恒等變換,屬于中檔題.18.(1)證明見解析(2)【解析】
(1)因?yàn)檎叫蜛BCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因?yàn)槠矫鍭BMN,平面ABMN,所以,,因?yàn)?,所以,因?yàn)椋?,所以,因?yàn)樵谥苯翘菪蜛BMN中,,所以,所以,所以,因?yàn)椋云矫妫?)如圖,取BM的中點(diǎn)E,則,又BM∥AN,所以四邊形ABEN是平行四邊形,所以NE∥AB,又AB∥CD,所以NE∥CD,因?yàn)槠矫鍯DM,平面CDM,所以NE∥平面CDM,所以點(diǎn)N到平面CDM的距離與點(diǎn)E到平面CDM的距離相等,設(shè)點(diǎn)N到平面CDM的距離為h,由可得點(diǎn)B到平面CDM的距離為2h,由題易得平面BCM,所以,且,所以,又,所以由可得,解得,所以點(diǎn)N到平面CDM的距離為.19.(1);(2)證明見解析【解析】
(1)運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,解得,,進(jìn)而得到橢圓方程;(2)設(shè)直線,代入橢圓方程,運(yùn)用韋達(dá)定理和直線的斜率公式,以及點(diǎn)在直線上滿足直線方程,化簡整理,即可得到定值.【詳解】(1)因?yàn)?,所以,①又橢圓過點(diǎn),所以②由①②,解得所以橢圓的標(biāo)準(zhǔn)方程為.(2)證明設(shè)直線:,聯(lián)立得,設(shè),則易知故所以對于任意的,直線的斜率之積為定值.【點(diǎn)睛】本題考查橢圓的方程的求法,注意運(yùn)用離心率公式和點(diǎn)滿足橢圓方程,考查直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡整理,考查運(yùn)算能力,屬于中檔題.20.見解析【解析】
選擇①或②或③,求出的值,然后利用等比數(shù)列的求和公式可得出關(guān)于的不等式,判斷不等式是否存在符合條件的正整數(shù)解,在有解的情況下,解出不等式,進(jìn)而可得出結(jié)論.【詳解】選擇①:因?yàn)?,所以,所以.令,即,,所以使得的正整?shù)的最小值為;選擇②:因?yàn)?,所以,.因?yàn)?,所以不存在滿足條件的正整數(shù);選擇③:因?yàn)?,所以,所以.令,即,整理得.?dāng)為偶數(shù)時,原不等式無解;當(dāng)為奇數(shù)時,原不等式等價于,所以使得的正整數(shù)的最小值為.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.21.(1)(2)【解析】
(1)由直線可得橢圓右焦點(diǎn)的坐標(biāo)為,由中點(diǎn)可得,且由斜率公式可得,由點(diǎn)在橢圓上,則,二者作差,進(jìn)而代入整理可得,即可求解;(2)設(shè)直線,點(diǎn)到直線的距離為,則四邊形的面積為,將代入橢圓方程,再利用弦長公式求得,利用點(diǎn)到直線距離求得,根據(jù)直線l與線段AB(不含端點(diǎn))相交,可得,即,進(jìn)而整理換元,由二次函數(shù)性質(zhì)求解最值即可.【詳解】(1)直線與x軸交于點(diǎn),所以橢圓右焦點(diǎn)的坐標(biāo)為,故,因?yàn)榫€段AB的中點(diǎn)是,設(shè),則,且,又,作差可得,則,得又,所以,因此橢圓的方程為.(2)由(1)聯(lián)立,解得或,不妨令,易知直線l的斜率存在,設(shè)直線,代入,得,解得或,設(shè),則,則,因?yàn)榈街本€的距離分別是,由于直線l與線段AB(不含端點(diǎn))相交,所以,即,所以,四邊形的面積,令,,則,所以,當(dāng),即時,,因
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保護(hù)患者隱私的制度和措施
- 高風(fēng)險行業(yè)疫情防控臨時隔離室制度
- 2024年智能家居合同
- 2025監(jiān)控系統(tǒng)銷售合同書
- 餐飲業(yè)疫情期間外出配送審批制度
- 2025轉(zhuǎn)讓技術(shù)秘密和補(bǔ)償貿(mào)易合作生產(chǎn)合同范文版
- 2025房屋質(zhì)押合同書
- 小學(xué)飲用水衛(wèi)生管理制度
- 環(huán)保工作制度
- 糖尿病護(hù)理管理制度
- 兵團(tuán)精神課件教學(xué)課件
- 如何高效學(xué)習(xí)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含答案
- 2024年北師大版八年級上冊全冊數(shù)學(xué)單元測試題含答案
- 2024年資格考試-WSET二級認(rèn)證考試近5年真題集錦(頻考類試題)帶答案
- 民辦學(xué)校競業(yè)限制合同文本
- POCT設(shè)備維護(hù)與醫(yī)療質(zhì)量控制
- 2024山東高速集團(tuán)限公司招聘367人高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
- 2024新信息科技四年級《第三單元 有趣的編碼應(yīng)用》大單元整體教學(xué)設(shè)計(jì)
- 中國集中式光伏電站行業(yè)發(fā)展策略、市場環(huán)境及前景研究分析報告
- MRI檢查技術(shù)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論