版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Copyright2019?McGraw-HillEducation.Allrightsreserved.NoreproductionordistributionwithoutthepriorwrittenconsentofMcGraw-HillEducation.
DataAnalyticsforAccounting,1e(Richardson)
Chapter3ModelingandEvaluation:GoingfromDefiningBusinessProblemsandDataUnderstandingtoAnalyzingDataandAnsweringQuestions
1)Benford'sLawisanabsoluteandalldatamustconform.
Answer:FALSE
Difficulty:1Easy
Topic:ExampleofProfilinginAuditingandContinuousAuditing
LearningObjective:03-02ExplaintheprofilingapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
2)Adecisiontreecanbeusedtodividedataintosmallergroups.
Answer:TRUE
Difficulty:1Easy
Topic:ClassificationTerminology
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology
3)Datareductionisadataapproachusedtoreducetheamountofinformationthatneedstobeconsideredtofocusonthemostcriticalitems.
Answer:TRUE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology
4)Regressionisadataapproachusedtoestimateorpredict,foreachunit,thenumericalvalueofsomevariableusingsometypeofstatisticalmodel.
Answer:TRUE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology
5)Linkpredictionisadataapproachusedtoestimateorpredict,foreachunit,thenumericalvalueofsomevariableusingsometypeofstatisticalmodel.
Answer:FALSE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
6)Existingdatathathasbeenmanuallyevaluatedandassignedaclassisoftenreferredtoastestdata.
Answer:FALSE
Difficulty:2Medium
Topic:ClassificationTerminology
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
7)Co-occurrencegroupingcouldbeusedtomatchvendorsbygeographicregion.
Answer:TRUE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
8)Fuzzymatchingisadataapproachusedtoidentifysimilarindividualsbasedondataknownaboutthem.
Answer:FALSE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
9)Alibabaanditsattempttoidentifysellerandcustomerfraudbasedonvariouscharacteristicsknownaboutthemisanexampleofsimilaritymatching.
Answer:TRUE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
10)Fuzzymatchingisacomputer-assistedtechniqueoffindingmatchesthatarelessthan100percentperfectbyfindingcorrespondencesbetweenportionsofthetextofeachpotentialmatch.
Answer:TRUE
Difficulty:1Easy
Topic:ExampleofDataReductioninInternalandExternalAuditing
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
11)ThePinIMPACTCyclerepresentsperformingtestplan.
Answer:TRUE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
12)Clusteringisadataapproachusedtodivideindividualsintogroupsinausefulormeaningfulway.
Answer:TRUE
Difficulty:1Easy
Topic:ClusteringDataApproach
LearningObjective:03-05UnderstandtheclusteringapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
13)Anexampleofclassificationwouldbeacreditcardcompanyflaggingatransactionasbeingapprovedorpotentiallybeingfraudulentanddenyingpayment.
Answer:TRUE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
14)Thedataapproachusedtocharacterizethetypicalbehaviorofanindividual,grouporpopulationbygeneratingsummarystatisticsaboutthedataisreferredtoasclassification.
Answer:FALSE
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
15)XBRLisaglobalstandardforexchangingfinancialreportinginformationthatusesXML.
Answer:TRUE
Difficulty:1Easy
Topic:ExamplesofDataReductioninOtherAccountingAreas
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
16)XBRLisusedtofacilitatetheexchangeoffinancialreportinginformationbetweenthecompanyandtheSecuritiesandExchangeCommission.
Answer:TRUE
Difficulty:1Easy
Topic:ExamplesofDataReductioninOtherAccountingAreas
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
17)Dataprofilingtypicallyinvolvesunstructureddata.
Answer:FALSE
Difficulty:1Easy
Topic:ProfilingDataApproach
LearningObjective:03-02ExplaintheprofilingapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
18)Atargetisamanuallyassignedcategoryappliedtoarecordbasedonanevent.
Answer:FALSE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
19)Whenconsideringaquestionsuchas"Doourcustomersformnaturalgroupsbasedonsimilarattributes?"youwoulduseanunsupervisedapproach.
Answer:TRUE
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
20)Co-occurrencegroupingisanexampleofasupervisedapproach.
Answer:FALSE
Difficulty:1Easy
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;BBIndustry
21)Allofthefollowingareexamplesofasupervisedapproachtoevaluationdataexcept:
A)Causalmodeling
B)Datareduction
C)Linkprediction
D)Regression
Answer:B
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
22)Allofthefollowingareexamplesofanunsupervisedapproachtoevaluationdataexcept:
A)Similaritymatching
B)Clustering
C)Profiling
D)Co-occurrencegrouping
Answer:A
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
23)Whichofthefollowingbestdescribesanunsupervisedapproachtotheevaluationofdata?
A)Dataexplorationthatisfreefromoversightbyasuperior
B)Dataexplorationthatexaminestherelationshipsbetweenvariablesthatarehypothesizedtoexist
C)Dataexplorationthatlooksforpotentialpatternsofinterest
D)Dataexplorationthatisconductedwithdirectoversightbyasuperior
Answer:C
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
24)Whichofthefollowingbestdescribesasupervisedapproachtotheevaluationofdata?
A)Dataexplorationthatisfreefromoversightbyasuperior
B)Dataexplorationthatisconductedwithdirectoversightbyasuperior
C)Dataexplorationthatexaminestherelationshipsbetweenvariablesthatarehypothesizedtoexist
D)Dataexplorationthatlooksforpotentialpatternsofinterest
Answer:C
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
25)Whichapproachtodataanalyticsattemptstoassigneachunitinapopulationintoasmallsetofcategories?
A)Classification
B)Regression
C)Similaritymatching
D)Co-occurrencegrouping
Answer:A
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
26)Whichapproachtodataanalyticsattemptstodivideindividualsintogroupsinausefulormeaningfulway?
A)Clustering
B)Datareduction
C)Similaritymatching
D)Co-occurrencegrouping
Answer:A
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
27)Whichapproachtodataanalyticsattemptstoidentifysimilarindividualsbasedondataknownaboutthem?
A)Classification
B)Clustering
C)Similaritymatching
D)Co-occurrencegrouping
Answer:C
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
28)Whichapproachtodataanalyticsattemptstodiscoverassociationsbetweenindividualsbasedontransactionsinvolvingthem?
A)Classification
B)Regression
C)Similaritymatching
D)Co-occurrencegrouping
Answer:D
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
29)Whichapproachtodataanalyticsattemptstoforecastarelationshipbetweentwodataitems?
A)Linkprediction
B)Regression
C)Similaritymatching
D)Co-occurrencegrouping
Answer:A
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
30)Whichapproachtodataanalyticsattemptstopredict,foreachunit,thenumericalvalueofsomevariable?
A)Classification
B)Regression
C)Similaritymatching
D)Linkprediction
Answer:B
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
31)Whichapproachtodataanalyticsattemptstocharacterizethetypicalbehaviorofanindividual,grouporpopulationbygeneratingsummarystatisticsaboutthedata?
A)Classification
B)Regression
C)Profiling
D)Linkprediction
Answer:C
Difficulty:2Medium
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
32)________referstodatathatisstoredinadatabaseorspreadsheetthatisreadilysearchable.
A)Trainingdata
B)Unstructureddata
C)Structureddata
D)Testdata
Answer:C
Difficulty:2Medium
Topic:ProfilingDataApproach
LearningObjective:03-02ExplaintheprofilingapproachtoDataAnalytics.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
33)Usingsocialmediatolookforrelationshipsbetweenrelatedpartiesthatarenototherwisedisclosedtoidentifyrelatedpartytransactionsisanexampleof________.
A)Classification
B)Regression
C)Profiling
D)Linkprediction
Answer:D
Difficulty:3Hard
Topic:PerformingtheTestPlan:DefiningDataAnalyticsApproaches
LearningObjective:03-01DefineDataAnalyticsApproaches.
Bloom's:Apply
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
34)Dataprofilingisusedtoassessdataqualityandinternalcontrols.Ittypicallyinvolvesthefollowingstepsexcept:
A)Filtertheresults.
B)Identifytheobjectsoractivityyouwanttoprofile.
C)Determinethetypesofprofilingyouwanttoperform.
D)Setboundariesorthresholdsfortheactivity.
Answer:A
Difficulty:2Medium
Topic:ProfilingDataApproach
LearningObjective:03-02ExplaintheprofilingapproachtoDataAnalytics.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
35)Regressionanalysistypicallyinvolvesthefollowingstepsexcept:
A)Identifythevariablesthatmightpredictanoutcome.
B)Identifytheparametersofthemodel.
C)Setboundariesorthresholds.
D)Determinethefunctionalformoftherelationship.
Answer:C
Difficulty:2Medium
Topic:RegressionDataApproach
LearningObjective:03-04UnderstandtheregressionandclassificationapproachtoDataAnalytics.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
36)Datareductiontypicallyinvolvesthefollowingstepsexcept:
A)Identifytheattributeyouwouldliketoreduceorfocuson.
B)Identifytheparametersofthemodel.
C)Filtertheresults.
D)Interprettheresults.
Answer:B
Difficulty:2Medium
Topic:DataReductionDataApproach
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
37)Whenworkingwithapredictivemodel,underfittingthedataismostlikelycausedby________.
A)anoverlycomplexmodel
B)anoverlysimplemodel
C)overpruningthedata
D)alackofdatareduction
Answer:B
Difficulty:2Medium
Topic:EvaluatingClassifiers
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
38)Ingeneral,themorecomplexthemodel,thegreaterthechanceof________.
A)Overfittingthedata
B)Underfittingthedata
C)Pruningthedata
D)Theneedtoreducetheamountofdataconsidered
Answer:A
Difficulty:2Medium
Topic:EvaluatingClassifiers
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
39)Whileoverfittingdatacouldleadtoanerrorrateof0(zero),itisunlikelythatyouwouldbeableto________yourresults.
A)define
B)specify
C)articulate
D)generalize
Answer:D
Difficulty:3Hard
Topic:EvaluatingClassifiers
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Apply
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
40)Whichofthefollowingbestdescribesanindependentvariable?
A)Output
B)Input
C)Application
D)Operation
Answer:B
Difficulty:1Easy
Topic:RegressionDataApproach
LearningObjective:03-04UnderstandtheregressionandclassificationapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
41)Whichofthefollowingbestdescribesadependentvariable?
A)Output
B)Input
C)Application
D)Operation
Answer:A
Difficulty:1Easy
Topic:RegressionDataApproach
LearningObjective:03-04UnderstandtheregressionandclassificationapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
42)Understandingandpredictinginventoryobsolescenceisanimportantdeterminationforretailcompanies.Whenusingcompetitorsellingpricestoestimatetheinventoryobsolescencereserve,theinventoryobsolescencereserverepresentswhichofthefollowing?
A)Independentvariable
B)Dependentvariable
C)Function
D)StatisticalModel
Answer:B
Difficulty:3Hard
Topic:RegressionDataApproach
LearningObjective:03-04UnderstandtheregressionandclassificationapproachtoDataAnalytics.
Bloom's:Apply
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
43)Understandingandpredictingwarrantyexpenseisanimportantdeterminationformanufacturingfirms.Whenusinghistoricalclaimsdatatoestimatethecurrentperiod'swarrantyexpense,thehistoricalclaimsdatarepresentswhichofthefollowing?
A)Independentvariable
B)Dependentvariable
C)Function
D)StatisticalModel
Answer:A
Difficulty:3Hard
Topic:RegressionDataApproach
LearningObjective:03-04UnderstandtheregressionandclassificationapproachtoDataAnalytics.
Bloom's:Apply
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
44)Oneofthekeytasksofbankauditorsistoconsidertheamountoftheloanlossreserve.Whendevelopingamodeltoestimatethecurrentyear'sloanlossreserveamount,whichofthefollowingwouldbeleastlikelytobeincludedasanindependentvariable?
A)Originalloanapprovalamount
B)Customerloanhistory
C)Currentagedloans
D)Collectionssuccess
Answer:A
Difficulty:3Hard
Topic:RegressionDataApproach
LearningObjective:03-04UnderstandtheregressionandclassificationapproachtoDataAnalytics.
Bloom's:Apply
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
45)Theshortsurveysregardingdiningpreferencesrequestedatthebottomoftherestaurantbillareanexampleofwhichdataapproach?
A)Clustering
B)Regression
C)Similaritymatching
D)Linkprediction
Answer:A
Difficulty:2Medium
Topic:ClusteringDataApproach
LearningObjective:03-05UnderstandtheclusteringapproachtoDataAnalytics.
Bloom's:Apply
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
46)Retailstoresoftenrequestcustomers'zipcodesattheendofasalestransaction.Thisisanexampleofwhichdataapproach?
A)Clustering
B)Regression
C)Similaritymatching
D)Classification
Answer:A
Difficulty:2Medium
Topic:ClusteringDataApproach
LearningObjective:03-05UnderstandtheclusteringapproachtoDataAnalytics.
Bloom's:Apply
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
47)
________isexistingdatathathasbeenmanuallyevaluatedandassignedaclassand
________isexistingdatausedtoevaluatethemodel.
A)Testdata;Trainingdata
B)Trainingdata;Testdata
C)Structureddata;Unstructureddata
D)Unstructureddata;Structureddata
Answer:B
Difficulty:1Easy
Topic:ClassificationTerminology
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
48)
________markthesplitbetweenoneclassandanother.
A)Decisiontrees
B)Identifyingquestions
C)Decisionboundaries
D)Linearclassifiers
Answer:C
Difficulty:1Easy
Topic:ClassificationTerminology
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
49)________statesthatinmanynaturallyoccurringcollectionsofnumbers,theleadingsignificantdigitislikelytobesmall.
A)Leadingdigitshypothesis
B)Moore'slaw
C)Benford'slaw
D)Classification
Answer:C
Difficulty:2Medium
Topic:ExampleofProfilinginAuditingandContinuousAuditing
LearningObjective:03-02ExplaintheprofilingapproachtoDataAnalytics.
Bloom's:Remember
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
50)Unawareofdataanalysistoolsavailabletotheinternalauditors,astoreemployeefrequentlyprocessescashreturnswithoutareceiptfor$99,whichisjustbelowtheamountrequiringmanagerapprovalof$100.Ananalysisusingwhichofthefollowingwouldlikely(andquickly)identifytheemployee'sfraudulentbehavior?
A)Leadingdigitshypothesis
B)Moore'slaw
C)Benford'slaw
D)Clustering
Answer:C
Difficulty:3Hard
Topic:ExampleofProfilinginAuditingandContinuousAuditing
LearningObjective:03-02ExplaintheprofilingapproachtoDataAnalytics.
Bloom's:Apply
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
51)Whatisthedifferencebetweenstructureddataandunstructureddata?Provideanexampleofeach.
Answer:Answersmayvaryslightly!
? Structureddataaredatathatareorganizedandresideinafixedfieldwitharecordorafile.Examplesinclude:Relationaldatabase,spreadsheet,orotherformatsthatarereadilysearchablebysearchalgorithms.
? Unstructureddataaredatathateitherdoesnothaveapre-defineddatamodelorisnotorganizedinapre-definedmanner.Examplesinclude:Photographs,Instagram,Twitter,orsatelliteImages.
Difficulty:2Medium
Topic:ProfilingDataApproach;DataReductionDataApproach
LearningObjective:03-02ExplaintheprofilingapproachtoDataAnalytics;03-03DescribethedatareductionapproachtoDataAnalytics
Bloom's:Understand
AACSB:ReflectiveThinking
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;BBIndustry
52)Decisiontreesareusedtodividedataintosmallergroupsbysplittingthedataateachbranchintotwoormoregroups.However,thismethodcouldleadtounintendedconsequencesifthedecisiontreeisnotpruned.Describethepruningprocess,whenitcanoccurandthebenefitsofusingit.
Answer:Answerswillvarybutshouldincludesomeoftheseitems.
? Pruningremovesbranchesfromadecisiontreetoavoidoverfittingthemodel.
o Pre-pruningoccursduringthemodelgeneration.Themodelstopscreatingnewbrancheswhentheinformationusefulnessofanadditionalbranchislow.
o Post-pruningevaluatesthecompletemodelanddiscardsbranchesafterthefact.
Difficulty:3Hard
Topic:ClassificationTerminology
LearningObjective:03-03DescribethedatareductionapproachtoDataAnalytics.
Bloom's:Apply
AACSB:ReflectiveThinking;KnowledgeApplication
AICPA:BBLeveragingTechnology;FNLeveragingTechnology;FNDecisionMaking
53)Chapter3discussed5(five)dataanalyticsapproachesortechniquesaremostcommontoaddressouraccountingquestions.Listanddefine3ofthe5dataanalyticsapproaches.Next,describehoweachofthe3dataanalyticsapproachesyoulistcouldbeusedbycreditcardcompaniestoidentifyfraudulentcreditcardactivity.
Answer:
? Classification:Adataapproachusedtoassigneachunitinapopulationintoafewcategoriespotentiallytohelpwithpredictions.
o Creditcardcompaniesestablishmodelstopredictfraudanddecidewhethertoacceptorrejectaproposedcreditcardtransaction.Apotentialmodelmaybethefollowing:
Transactionapproval=f(locationofcurrenttransaction,locationoflasttransaction,amountofcurrenttransaction,priorhistoryoftravelofcreditcardholder,etc.)
? Clustering:dataapproachusedtodivideindividuals(likecustomers)intogroups(orclusters)inausefulormeaningfulway.
o Heatmapcouldbeusedtodetermineifpurchasesareoutsideoftheperson's"home"region
? Datareduction:Adataapproachusedtoreducetheamountofinformationthatneedstobeconsideredtofocusonthemostcriticalitems(i.e.,highestcost,highes
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年城市綠地養(yǎng)護(hù)保潔服務(wù)合同3篇
- 溫州肯恩大學(xué)《AM技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 二零二五年度跨境電商供應(yīng)鏈融資擔(dān)保協(xié)議書3篇
- 二零二五版廢鐵貿(mào)易結(jié)算與倉儲服務(wù)合同3篇
- 二零二五年金融租賃擔(dān)保協(xié)議與保證合同規(guī)范2篇
- 2025年度特色小吃街加盟經(jīng)營合同范本3篇
- 2025年度電影項(xiàng)目投資與回報(bào)分成協(xié)議3篇
- 2024文化藝術(shù)品交易平臺建設(shè)與運(yùn)營協(xié)議
- 2024版保安勞動合同書范本
- 2025年度化學(xué)原料藥廢棄物處理與資源化利用合同3篇
- 2024年計(jì)算機(jī)二級WPS考試題庫(共380題含答案)
- 《湖南省房屋建筑和市政工程消防質(zhì)量控制技術(shù)標(biāo)準(zhǔn)》
- 中建集團(tuán)面試自我介紹
- 《工業(yè)園區(qū)節(jié)水管理規(guī)范》
- 警校生職業(yè)生涯規(guī)劃
- 意識障礙患者的護(hù)理診斷及措施
- 2024版《53天天練單元?dú)w類復(fù)習(xí)》3年級語文下冊(統(tǒng)編RJ)附參考答案
- 2025企業(yè)年會盛典
- 215kWh工商業(yè)液冷儲能電池一體柜用戶手冊
- 場地平整施工組織設(shè)計(jì)-(3)模板
- 交通設(shè)施設(shè)備供貨及技術(shù)支持方案
評論
0/150
提交評論