【泰勒公式及其應(yīng)用探究(論文)6700字】_第1頁
【泰勒公式及其應(yīng)用探究(論文)6700字】_第2頁
【泰勒公式及其應(yīng)用探究(論文)6700字】_第3頁
【泰勒公式及其應(yīng)用探究(論文)6700字】_第4頁
【泰勒公式及其應(yīng)用探究(論文)6700字】_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

[14].結(jié)束語本文對的寫作主要說明了兩個部分,即泰勒公式及其應(yīng)用,是在前人的研究成果上總結(jié)的.通過探討泰勒公式的證明、類型及其應(yīng)用,體現(xiàn)了一定的優(yōu)越性和實用性.在進(jìn)行了過程性的闡述及簡單證明之后,給出兩種泰勒公式及其常用函數(shù)的泰勒展開式,在解決問題時,兩種的泰勒公式的作用有不同的傾向性,如求極值或極限的問題,求函數(shù)的冪級展開式常用就是代有佩亞諾型余項的泰勒公式在處的展開式;而在證明有關(guān)中值定理問題時,要利用帶拉格朗日余項的泰勒公式去證明.在應(yīng)用情景中,要根據(jù)實際情況選擇合適的公式.本文只總結(jié)了泰勒公式的九個方面的應(yīng)用,有的應(yīng)用是用于利用它們原有的常用定理或方法所不能解決,只有利用泰勒公式來簡化函數(shù)或者搭建橋梁,來達(dá)到解決問題或證明的目的.在大學(xué)數(shù)學(xué)分析課本中,泰勒公式的應(yīng)用最多的是求函數(shù)的冪級展開式、近似計算與誤差估計以及證明有關(guān)微分中值定理等,這些也是要求我們掌握的最簡單的應(yīng)用.而對于其它的數(shù)學(xué)問題,如利用泰勒公式求極值或極限、證明等式與不等式、研究圖形的局部問題等,雖然這些問題有它們常用的解決方法,但如果遇到某些復(fù)雜的函數(shù)在求導(dǎo)或者條件不夠時非常麻煩,在此時,泰勒公式將派上用場.在泰勒公式的應(yīng)用方面,我們通常的思路是將復(fù)雜的函數(shù)通過泰勒公式展開為簡單的一元函數(shù)多項式,再通過相關(guān)的定理和知識進(jìn)行求解或證明.參考文獻(xiàn)徐會林,劉智廣,肖中永.從多項式逼近函數(shù)引出泰勒公式[J].高師理科學(xué)刊,2018,38(02):57-60.華東師范大學(xué)數(shù)學(xué)系.數(shù)學(xué)分析[M].北京:高等教育出版社,1981李晟威.泰勒公式的證明及應(yīng)用[J].課程教育研究,2018(42):129-130.章臘萍.帶皮亞諾余項和拉格朗日余項的泰勒公式應(yīng)用比較[J].高等數(shù)學(xué)研究,2019,22(05):25-28.譚陶玲.高等數(shù)學(xué)中的泰勒公式及其應(yīng)用[J].農(nóng)家參謀,2020(21):217-218.劉艷.泰勒公式在函數(shù)極限計算中的方法探討[J].教育教學(xué)論壇,2020(28):328-329.戴祥軍.全國大學(xué)生數(shù)學(xué)競賽中泰勒公式求極限的應(yīng)用技巧探討[J].科技經(jīng)濟(jì)導(dǎo)刊,2020,28(21):163.蕭明達(dá).泰勒公式與函數(shù)極值——極值判定的充分條件[J].杭州教育學(xué)院學(xué)報(自然科學(xué)版),1994(02):8-10.徐會林.泰勒公式在數(shù)值分析中的應(yīng)用[J].韶關(guān)學(xué)院學(xué)報,2019,40(12):5-8.楊磊.泰勒公式在微分學(xué)中的應(yīng)用[J].赤峰學(xué)院學(xué)報(自然科學(xué)版),2020,36(01):10-12.竇慧.泰勒公式在極限和等式不等式中的地位與作用[J].教育教學(xué)論壇,2014(23):113-114.游揚(yáng).泰勒公式在不等式中的應(yīng)用[J].吉林化工學(xué)院學(xué)報,2020,37(01):85-87.齊成輝.泰勒公式的應(yīng)用[J].內(nèi)江科技,2018,39(12):34-35.徐森林,薛春華.數(shù)學(xué)分析(第一冊)[M].清華大學(xué)出版社,2005.周敬人.關(guān)于泰勒公式的應(yīng)用探究[J].焦作大學(xué)學(xué)報,2020,34(04):95-97.趙旭波,李小平.利用微分學(xué)證明不等式的幾種典型證法[J].高

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論