版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
安徽省太和縣民族中學2025屆數(shù)學高二上期末監(jiān)測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)學家歐拉在1765年發(fā)現(xiàn),任意三角形的外心、重心、垂心位于同一條直線上,這條直線稱為歐拉線.已知的頂點,,若其歐拉線的方程為,則頂點的坐標為()A. B.C. D.2.記為等差數(shù)列的前項和.若,,則的公差為()A.1 B.2C.4 D.83.已知圓C過點,圓心在x軸上,則圓C的方程為()A. B.C. D.4.某城市2017年的空氣質(zhì)量狀況如下表所示:污染指數(shù)3060100110130140概率其中污染指數(shù)時,空氣質(zhì)量為優(yōu);時,空氣質(zhì)量為良;時,空氣質(zhì)量為輕微污染,該城市2017年空氣質(zhì)量達到良或優(yōu)的概率為()A. B.C. D.5.直線的一個法向量為()A. B.C. D.6.曲線y=lnx在點M處的切線過原點,則該切線的斜率為()A.1 B.eC.-1 D.7.過拋物線的焦點作互相垂直的弦,則的最小值為()A.16 B.18C.32 D.648.記等差數(shù)列的前n項和為,若,,則等于()A.5 B.31C.38 D.419.設等差數(shù)列,前n項和分別是,若,則()A.1 B.C. D.10.在等差數(shù)列中,若,則()A.6 B.9C.11 D.2411.在數(shù)列中,若,則稱為“等方差數(shù)列”,下列對“等方差數(shù)列”的判斷,其中不正確的為()A.若是等方差數(shù)列,則是等差數(shù)列 B.若是等方差數(shù)列,則是等方差數(shù)列C.是等方差數(shù)列 D.若是等方差數(shù)列,則是等方差數(shù)列12.點到直線的距離是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的右焦點為F,以F為圓心,以a為半徑的圓與雙曲線C的一條漸近線交于A,B兩點.若(O為坐標原點),則雙曲線C的離心率為___________.14.已知數(shù)列滿足,則的前20項和___________.15.隨機抽取某社區(qū)名居民,調(diào)查他們某一天吃早餐所花的費用(單位:元),所獲數(shù)據(jù)的莖葉圖如圖所示,則這個數(shù)據(jù)的眾數(shù)是_________16.已知直線和互相平行,則實數(shù)的值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).若函數(shù)有兩個極值點,求實數(shù)的取值范圍.18.(12分)已知直線與雙曲線相交于、兩點.(1)當時,求;(2)是否存在實數(shù),使以為直徑的圓經(jīng)過坐標原點?若存在,求出的值;若不存在,說明理由.19.(12分)已知橢圓的焦點為,且長軸長是焦距的倍(1)求橢圓的標準方程;(2)若斜率為1的直線與橢圓相交于兩點,已知點,求面積的最大值20.(12分)已知,是函數(shù)的兩個極值點.(1)求的解析式;(2)記,,若函數(shù)有三個零點,求的取值范圍.21.(12分)如圖,直四棱柱中,底面是邊長為的正方形,點在棱上.(1)求證:;(2)從條件①、條件②、條件③這三個條件中選擇兩個作已知,使得平面,并給出證明.條件①:為的中點;條件②:平面;條件③:.(3)在(2)的條件下,求平面與平面夾角的余弦值.22.(10分)某雙曲線型自然冷卻通風塔的外形是由圖1中的雙曲線的一部分繞其虛軸所在的直線旋轉(zhuǎn)一周所形成的曲面,如圖2所示.雙曲線的左、右頂點分別為、.已知該冷卻通風塔的最窄處是圓O,其半徑為1;上口為圓,其半徑為;下口為圓,其半徑為;高(即圓與所在平面間的距離)為.(1)求此雙曲線的方程;(2)以原平面直角坐標系的基礎上,保持原點和x軸、y軸不變,建立空間直角坐標系,如圖3所示.在上口圓上任取一點,在下口圓上任取一點.請給出、的值,并求出與的值;(3)在(2)的條件下,是否存在點P、Q,使得P、A、Q三點共線.若不存在,請說明理由;若存在,求出點P、Q的坐標,并證明此時線段PQ上任意一點都在曲面上.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】設,計算出重心坐標后代入歐拉方程,再求出外心坐標,根據(jù)外心的性質(zhì)列出關于的方程,最后聯(lián)立解方程即可.【詳解】設,由重心坐標公式得,三角形的重心為,,代入歐拉線方程得:,整理得:①的中點為,,的中垂線方程為,即聯(lián)立,解得的外心為則,整理得:②聯(lián)立①②得:,或,當,時,重合,舍去頂點的坐標是故選:A【點睛】關鍵點睛:解決本題的關鍵一是求出外心,二是根據(jù)外心的性質(zhì)列方程.2、C【解析】根據(jù)等差數(shù)列的通項公式及前項和公式利用條件,列出關于與的方程組,通過解方程組求數(shù)列的公差.【詳解】設等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.3、C【解析】設出圓的標準方程,將已知點的坐標代入,解方程組即可.【詳解】設圓的標準方程為,將坐標代入得:,解得,故圓的方程為,故選:C.4、A【解析】根據(jù)互斥事件的和的概率公式求解即可.【詳解】由表知空氣質(zhì)量為優(yōu)的概率是,由互斥事件的和的概率公式知,空氣質(zhì)量為良的概率為,所以該城市2017年空氣質(zhì)量達到良或優(yōu)的概率,故選:A【點睛】本題主要考查了互斥事件,互斥事件和的概率公式,屬于中檔題.5、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.6、D【解析】設出點坐標,結合導數(shù)列方程,由此求得切點坐標并求得切線的斜率.【詳解】設切點為,,故在點的切線的斜率為,所以,所以切點為,切線的斜率為.故選:D7、B【解析】根據(jù)拋物線方程求出焦點坐標,分別設出,所在直線方程,與拋物線方程聯(lián)立,利用根與系數(shù)的關系及弦長公式求得,,然后利用基本不等式求最值.【詳解】拋物線的焦點,設直線的直線方程為,則直線的方程為.,,,.由,得,,同理可得..當且僅當,即時取等號.所以的最小值為.故選:B8、A【解析】設等差數(shù)列的公差為d,首先根據(jù)題意得到,再解方程組即可得到答案.【詳解】解:設等差數(shù)列的公差為d,由題知:,解得.故選:A.9、B【解析】根據(jù)等差數(shù)列的性質(zhì)和求和公式變形求解即可【詳解】因為等差數(shù)列,的前n項和分別是,所以,故選:B10、B【解析】根據(jù)等差數(shù)列的通項公式的基本量運算求解【詳解】設的公差為d,因為,所以,又,所以故選:B11、B【解析】根據(jù)等方差數(shù)列的定義逐一進行判斷即可【詳解】選項A中,符合等差數(shù)列的定義,所以是等差數(shù)列,A正確;選項B中,不是常數(shù),所以不是等方差數(shù)列,選項B錯誤;選項C中,,所以是等方差數(shù)列,C正確;選項D中,所以是等方差數(shù)列,D正確故選:B12、B【解析】直接使用點到直線距離公式代入即可.【詳解】由點到直線距離公式得故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】過F作,利用點到直線距離可求出,再根據(jù)勾股定理可得,,由可得,即可建立關系求解.【詳解】如圖,過F作,則E是AB中點,設漸近線為,則,則在直角三角形OEF中,,在直角三角形BEF中,,,則,即,即,則,即,.故答案為:.【點睛】本題考查雙曲線離心率的求解,解題的關鍵是分別表示出,,由建立關系.14、135【解析】直接利用數(shù)列的遞推關系式寫出相鄰四項之和,進而求出數(shù)列的和.【詳解】數(shù)列滿足,所以,故,當時,,當時,,,當時,,所以.故答案為:135.15、【解析】將個數(shù)據(jù)寫出來,可得出這組數(shù)據(jù)的眾數(shù).【詳解】這個數(shù)據(jù)分別為、、、、、、、、、、、、、、,該組數(shù)據(jù)的眾數(shù)為.故答案為:.16、【解析】根據(jù)直線平行的充要條件即可求出實數(shù)的值.詳解】由直線和互相平行,得,即.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、.【解析】求得,根據(jù)其在上有兩個零點,結合零點存在性定理,對參數(shù)進行分類討論,即可求得參數(shù)的取值范圍.【詳解】因為,所以,令,由題意可知在上有兩個不同零點.又,若,則,故在上為增函數(shù),這與在上有兩個不同零點矛盾,故.當時,,為增函數(shù),當時,,為減函數(shù),故,因為在上有兩個不同零點,故,即,即,取,,故在有一個零點,取,,令,,則,故在為減函數(shù),因為,故,故,故在有一個零點,故在上有兩個零點,故實數(shù)的取值范圍為.【點睛】本題考察利用導數(shù)由函數(shù)的極值點個數(shù)求參數(shù)的范圍,涉及零點存在定理,以及利用導數(shù)研究函數(shù)單調(diào)性,屬綜合困難題.18、(1);(2)不存在,理由見解析.【解析】(1)當時,將直線的方程與雙曲線的方程聯(lián)立,列出韋達定理,利用弦長公式可求得;(2)假設存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設、,將直線與雙曲線的方程聯(lián)立,列出韋達定理,由已知可得出,利用平面向量數(shù)量積的坐標運算結合韋達定理可得出,即可得出結論.【小問1詳解】解:設點、,當時,聯(lián)立,可得,,由韋達定理可得,,所以,.【小問2詳解】解:假設存在實數(shù),使以為直徑的圓經(jīng)過坐標原點,設、,聯(lián)立得,由題意可得,解得且,由韋達定理可知,因為以為直徑的圓經(jīng)過坐標原點,則,所以,,整理可得,該方程無實解,故不存在.19、(1);(2)1.【解析】(1)根據(jù)給定條件求出橢圓半焦距c,長短半軸長a,b即可得解.(2)設出直線的方程,再與橢圓C的方程聯(lián)立,求出弦AB長及點P到直線的距離,然后求出面積的表達式并求其最大值即得.【小問1詳解】設橢圓的標準方程為,依題意,半焦距,,即,所以橢圓的標準方程為.【小問2詳解】依題意,設直線,,由消去y并整理得:,由,解得,則有,,于是得,而點到直線的距離為,因此,的面積,當且僅當,即時取“=”,所以面積最大值為1.【點睛】結論點睛:直線l:y=kx+b上兩點間的距離;直線l:x=my+t上兩點間的距離.20、(1);(2)【解析】(1)根據(jù)極值點的定義,可知方程的兩個解即為,,代入即得結果;(2)根據(jù)題意,將方程轉(zhuǎn)化為,則函數(shù)與直線在區(qū)間,上有三個交點,進而求解的取值范圍【詳解】解:(1)因為,所以根據(jù)極值點定義,方程的兩個根即為,,,代入,,可得,解之可得,,故有;(2)根據(jù)題意,,,,根據(jù)題意,可得方程在區(qū)間,內(nèi)有三個實數(shù)根,即函數(shù)與直線在區(qū)間,內(nèi)有三個交點,又因為,則令,解得;令,解得或,所以函數(shù)在,上單調(diào)遞減,在上單調(diào)遞增;又因為,,,,函數(shù)圖象如下所示:若使函數(shù)與直線有三個交點,則需使,即21、(1)證明見解析;(2)答案見解析;(3).【解析】(1)連結,,由直四棱柱的性質(zhì)及線面垂直的性質(zhì)可得,再由正方形的性質(zhì)及線面垂直的判定、性質(zhì)即可證結論.(2)選條件①③,設,連結,,由中位線的性質(zhì)、線面垂直的性質(zhì)可得、,再由線面垂直的判定證明結論;選條件②③,設,連結,由線面平行的性質(zhì)及平行推論可得,由線面垂直的性質(zhì)有,再由線面垂直的判定證明結論;(3)構建空間直角坐標系,求平面、平面的法向量,應用空間向量夾角的坐標表示求平面與平面夾角的余弦值.【小問1詳解】連結,,由直四棱柱知:平面,又平面,所以,又為正方形,即,又,∴平面,又平面,∴.【小問2詳解】選條件①③,可使平面.證明如下:設,連結,,又,分別是,的中點,∴.又,所以.由(1)知:平面,平面,則.又,即平面.選條件②③,可使平面.證明如下:設,連結.因為平面,平面,平面平面,所以,又,則.由(1)知:平面,平面,則.又,即平面.【小問3詳解】由(2)可知,四邊形為正方形,所以.因為,,兩兩垂直,如圖,以為原點,建立空間直角坐標系,則,,,,,,所以,.由(1)知:平面的一個法向量為.設平面的法向量為,則,令,則.設平面與平面的夾角為,則,所以平面與平面夾角的余弦值為.22、(1);(2),,,;(3)存在,或,證明見解析.【解析】(1)設雙曲線的標準方程為,易知,設,,代入求解即可;(2)分析圓,圓的方程即可求解;(3)利用圓的參數(shù)方程,設,,利用,即可求解,再利用線段PQ上任意一點的特征證明點在曲面上;【小問
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 磁條讀取器項目可行性實施報告
- 淋浴和沐浴用啫喱市場環(huán)境與對策分析
- 手機APP設計與開發(fā)實施指南
- 危險化學品應急監(jiān)測流程
- Unit 5 語法(復習講義)-2023-2024學年三年級英語上冊單元速記·巧練(譯林版三起)
- 區(qū)塊鏈技術基礎教程
- 操作系統(tǒng)-2023-秋學習通超星期末考試答案章節(jié)答案2024年
- M5U2語法復習+鞏固練習-2023-2024學年五年級英語上冊單元速記·巧練(外研版三起)
- 企業(yè)采購流程及成本控制規(guī)范
- 清潔梳市場環(huán)境與對策分析
- 蜘蛛介紹(課堂PPT)
- 安全臺帳范本
- 三年級科學下冊制作小磁針1冀教版ppt課件
- McKinsey DCF Valuation 2000
- 外協(xié)件產(chǎn)品技術開發(fā)協(xié)議
- 最新經(jīng)典住宿清單(流水賬單)模版
- 出生證明日文翻譯
- 中國鐵路總公司公開招聘報名表doc.doc
- 隧道臺車計算書
- 工傷風險數(shù)據(jù)庫
- 建筑工程總承包與分包界面劃分大全(4種)
評論
0/150
提交評論