2024年公共電動(dòng)車(chē)充電設(shè)施的需求費(fèi)用減免策略研究報(bào)告_第1頁(yè)
2024年公共電動(dòng)車(chē)充電設(shè)施的需求費(fèi)用減免策略研究報(bào)告_第2頁(yè)
2024年公共電動(dòng)車(chē)充電設(shè)施的需求費(fèi)用減免策略研究報(bào)告_第3頁(yè)
2024年公共電動(dòng)車(chē)充電設(shè)施的需求費(fèi)用減免策略研究報(bào)告_第4頁(yè)
2024年公共電動(dòng)車(chē)充電設(shè)施的需求費(fèi)用減免策略研究報(bào)告_第5頁(yè)
已閱讀5頁(yè),還剩145頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

DemandChargeMitigation

Strategiesfor

PublicEVChargers

Weighingthecostsandbenefitstoutilities,chargingstationsitehosts,andEVdrivers

MARCH2024

Preparedfor:

TheElectricVehicleCounciloftheTransportationEnergyInstitute

Preparedby:ESource

OriginallyfoundedaspartoftheRockyMountainInstitute(RMI),ESourcehasbeensupportingtheelectric,

gas,andwaterutilityindustrieswithresearch,advising,consulting,anddata-scienceservicesfornearly40years.ESourcehelpsmorethan600utilities-thatinturnservemorethan90%ofthepopulationsintheU.S.andCanada-todeliverbest-in-classdecarbonizationandresource-efficiencyprograms,grid-modernizationprojects,andasset-managementandoperationsoptimization.

Reportauthors:BryanJungers

JesseHitchcockBenCampbell

KyleRodriguez

?2024TransportationEnergyInstitute

Disclaimer:TheopinionsandviewsexpressedhereindonotnecessarilystateorreflectthoseoftheindividualsontheTransportationEnergyInstituteBoardofDirectorsandtheTransportationEnergyInstituteBoardofAdvisorsoranycontributingorganizationtotheTransportationEnergyInstitute.TransportationEnergyInstitutemakesnowarranty,expressorimplied,nordoesitassumeanylegalliabilityorresponsibilityfortheuseofthereportoranyproductorprocessdescribedinthesematerials.

TRANSPORTATIONENERGYINSTITUTE|EVC

EXECUTIVESUMMARY

DemandChargeMitigationStrategiesforPublicEVChargers

Electricutilitydemandchargescan

havesignificantimpactsonthebusinessmodelofelectricvehicle(EV)chargingstations.Demandchargesarefeesleviedbyutilitiesoncommercialandindustrial(C&I)customersbasedontheirhighestlevelofelectricitydemandduringa

specifiedbillingperiod,usuallyone

month.Theyaredesignedtorecover

thecostofdeliveringpowerattimesofpeak-powerdemandontheelectricgrid

toexistingelectricutilitycustomers(e.g.,commercialbuildings,

manufacturingfacilities).

Forexample,anelectricutilitycustomerthatinstallsfour150kWEVchargerswouldrequireanadditional600kWofservicetodeliverpeak-powerdemand

tothefacility.Thedemandchargesforthisfacilitywouldbecalculatedbaseduponademandchargerate(expressedintermsof$/kW)multipliedbythehighestlevelofdemandrecordedoveraperiodoftime,oftenoveraperiodof15minutesinagiven

month.Demandchargescanrepresentasignificantportionofabusinesscustomer’selectricitybill,

dependingonhowandwhentheyuseenergy.

(Formoredetailsaboututilityterms,concepts,ratesanddemandcharges,see

AppendixA

beginningonpage51.)

ForEVfast-chargingstations—whichprimarily

employdirect-currentfastcharger(DCFC)

technology—demandchargescanbeparticularly

3

TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS

challenging,asthesestationsoftenhaveahighpeakdemandrelativetotheirtotalenergyconsumption.Theoperatingcharacteristicsofpublic-access

DCFCs—havingvariableanduncertainutilizationcharacteristics—canleadtohighoperatingcosts

relativetorevenues,makingitdifficultforchargingstationsitehoststorecovercostsoroperate

profitably.Forthepurposesofthisstudy,wearefocusedsolelyonoperatingcostsforpublic-accessDCFCstationsusedbylight-dutyconsumerEVs.

Toaddressthesefinancialchallenges,utilities,

solutionproviders,andchargingstationhostsare

allexploringdifferentmitigationstrategiestohelp

loweroperatingcosts.Theseincludeavarietyof

approachesforcontrollingandmanagingelectricitydemand,managingdemandcharges,experimentingwithnewutilityratestructures,identifyingnew

revenuestreamsandbusinessmodels,andgenerallyseekingalternativesfortheprofitableoperation

TABLEES-1:QUALITATIVESUMMARYOFNETCOSTORBENEFITOFEACHMITIGATION

STRATEGYBYSTAKEHOLDERGROUP

STRATEGY

Eliminate

demand

charges

ELECTRICUTILITIES

-

STATION

OPERATORS

+

EVDRIVERS

+

Capenergycosts

-

+

o

Co-locateBESS

o

o

+

Manage

charging

+

o

-

Foreachofthefourdemandchargemitigationstrategies

evaluatedinthisstudy,wesummarizeheretheanticipatednetimpacttoeachstakeholdergroup.A“+”signrepresentsanet

increaseinbenefitsand/ordecreaseincosts,relativetobaselineconditions(i.e.,nomitigation).A“-“signrepresentsanetdecreaseinbenefitsand/orincreaseincosts,anda“o”signrepresents

noimpactorcostsandbenefitsthataremore-or-lessbalanced.Forexample,formanagedchargingwecanseethattheutility

benefitsoverall(loweredgridimpacts/costtoserve),thestationhostexperiencesbalancedcost-benefitoutcomes(lowerenergycostsbutalsopotentialcustomersatisfactionconcerns),andtheEVdrivergenerallyexperiencesadecreaseinbenefits(longerwaittimesorreducedbatterychargepersession).

Source:ESource

ofEVchargingstations.Forexample,DCFCstationhostsmaychoosetoofferpricingdiscountsduringoff-peakdemandperiodsortouseabatteryenergystoragesystem(BESS)tostoreelectricityforuse

duringpeak-demandperiods.Wheresuchoptionsexist,theymayalsobeableenrollindemand

response(DR)orotherutilityprogramstohelp

managepeakdemand,delivergridservices,reduce

energyexpenses,andlowertotalstationoperatingcosts.

TheTransportationEnergyInstitute’sElectric

VehicleCouncilcommissionedthisstudytoevaluatethepotentialeffectsofdifferentdemandcharge

mitigationstrategiesonvariousstakeholders.Theintendedaudiencesforthisstudyarestakeholdersoperatingintheelectricvehiclemarket,includingelectricutilities,EVchargingstationsitehostsandEVdrivers.Theintendedoutcomeistoarticulatehowvariousdemand-chargemitigationstrategiesareexpectedtoimpactcostsandbenefitstokeystakeholdergroupsasEVmarketsevolve.As

willbedemonstrated,differentstrategiesaffect

stakeholdersdifferently;consequently,thisreportisnotintendedtoidentifyapreferredstrategy.

Thoughmyriadpossiblestrategiesexist,belowaresummariesofthemost-commontypesofmitigationstrategiesweidentifiedthroughourresearch.As

shownin

TableES-1

,eachstrategycarrieswithitamixtureofpositive,neutral,ornegativeimplicationsfortheaffectedstakeholdergroups:

1.Reduceoreliminatedemandcharges

forDCFCs.Thismitigationstrategyinvolves

creatingspecialratetariffsor“holiday”periodsforDCFCsthatreduceorremovedemand

chargesintheratestructure.ThiscanbeaneffectivestrategyformitigatingthenegativefinancialimpactsofdemandchargestoDCFCstationhostsinthenearterm.

?Utilities.ThisishowsomeratetariffsforutilityownedDCFCsarecurrentlystructured,leadingtoanunevenplayingfieldforthird-party

4

TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS

stationshostsandoperators.Utilitiesmay

loserevenueifthisstrategyisbroadlyappliedtoallDCFCs.However,theymayalsoattractmorestationdevelopment,projects,andloadtotheirserviceterritorywhenengagedin

activeratereform,withgrowthinrevenuesovertime.Thisoptionmayplaceadditionalfinancialburdenonutilitycustomersinthenearterm,iftherealizedcostsassociated

withservingDCFCstationsarepassed

alongtotheratepayers.Utilitiesshouldalsoconsidertestimonialsandhearingswhich

callintoquestioncoincident-peakimpactsofDCFCstationoperationandtheactualcostsincurredonthegrid.

?Stationhosts.Inmostcases,eliminating

demandchargeswouldreduceenergycostsforEVchargingstationsitehostsimmediately,loweringthecosttooperatethesestations,

improvingtheirmargins,andeliminatingtheneedtoimplementotherdemand-charge

mitigationstrategies.Underidealconditions,thismayencouragebroaderinvestmentsininfrastructurefromtheprivatesector.

?EVdrivers.Totheextentthatloweringor

eliminatingdemandchargesencourages

greaterinvestmentsinEVcharging

infrastructure,EVdriverswillbenefitfrom

suchinvestments.Inthefuture,lowerenergycoststositehostscouldalsotheoretically

bepassedalongtoEVdriversintheformofcompetitivepricing.Intheneartermthesesamedriversmayexperienceincreased

energycostsoverall,whereutilityoperatingcostsarepassedalongtotheratebase,since

allEVdriversarealsoelectricutilitycustomersandthereforeratepayers.Thisapproachmayalsolimittheneedforalternativestrategies

suchaschargemanagement/demandcontrolsthatimpedetherateofEVcharging,therebyimprovingEVdrivers’experience.

2.Capthetotalper-kWhmonthlyenergy

costsforlow-usestations.Thismitigation

strategyinvolvessettingamaximummonthlyenergycostforDCFChosts,typicallybased

onhowmuchenergyisconsumedintotalpermonth(i.e.,maximum$/kWh).Iteliminatesthepossibilityofmassivemonthlybills,helpingtomakeenergycostsforDCFCstationsitehostsmorepredictableandstable.

?Utilities.Thisstrategylimitsrevenueloss

forutilities,relativetoeliminateddemand

charges.However,someofthecostburden

associatedwithservingDCFCsmaystillresidewithutilitiesand/orbepassedalongasrateincreasestoallutilitycustomers.Implicit

inthisstrategyisanassumptionthatas

utilizationratesincrease,demand-basedpricingwillbereintroduced,andcapsmaybescaledrelativetoutilizationorremovedaltogether.

?Stationhosts.Thisstrategyhelpstode-riskDCFCinvestmentsintheneartermby

loweringmonthlyenergycostsandmakingthemmorepredictableandstable.ThiswillhelptoimprovethemarginsassociatedwithDCFCstationoperation.

?EVdrivers.Withimprovedeconomicsforsitehosts,EVdriversmayexperienceancillary

benefits,suchasmoreinstalledDCFC

infrastructure,betternetworkcoverage,andimprovedreliability.

5

TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS

3.Installco-locatedbatteriestohelpmanagepeakdemand.Thismitigationstrategy

involvesinstallinganon-siteBESSatDCFC

stations.Predictiveanalyticsandcontrolsarealsoneededtomanagepeakstationdemandandpowerflowmixfromdistributedenergyresources(DERs).ContinueduseofBESSasaDCMstrategyovertime,however,willlikely

necessitatecontinuousupgradesandscalingtokeeppacewithincreasingDCFCcharge

rates,utilizationrates,andothertechnologicaladvancements.

?Utilities.DERssuchasbatteriescanreducetheneedfordistributionsystemcapacity

upgradesandlineextensionsinsomecases,dependingonsitecharacteristics.Batteriesmayalsobeusedtohelpmanagepeak

monthlydemand,andtoensureagreeablepowerqualitycharacteristicsduringDCFCoperation.Utilitiesmayloserevenues

associatedwithmonthlydemandcharges,buttheircosttoserveDCFCloadswillbeloweredaswell.

?Stationhosts.Cansavemoneyviademand-chargemanagement,dependingonlocal

utilityrates.Wherebatteriesareusedtoavoidgridserviceupgrades,projecttimelinescanbeaccelerated.DERsmayhelpimprovestationreliability,lowercarbonintensity(dependingonlocalgridmix),andimprovethesitehost’sROIifandwhereexcesspowercanbesoldasexportbacktothegrid.GridinterconnectionrequirementsforDERsmayalsodelayprojecttimelinesinsomecases(e.g.,whenexportingpowerbacktothegrid).Thesesystemsalso

becomelesseffectiveatmanagingdemandasstationutilizationincreasesovertime.

?EVdrivers.Whereutilitygridservicesare

limited,anEVmaystillbeabletoreceiveafastchargewhereco-locatedbatteriesareused,

evenduringtimesoflocalizedgridconstraints,

disturbances,oroutages.Thisstrategymay

alsodeliverlower-carbonelectricityforEV

charging,dependingonthelocalutility

gridmix(e.g.,whenpairedwithrenewable

generation).However,duringperiodsofhighstationutilization,thebatterycanbedrainedandtheEVdriverwillexperienceaslower

chargeifthesitehasinsufficientgridcapacity.

6

TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS

4.ManageEVchargingduringpeakperiods.Thismitigationstrategyinvolveslimitingor

reducingthepowerdrawforoneormore

vehicleschargingataDCFCstation.Chargingcanbecontrolledbytheutility,stationhost,orathirdparty,relativetostationdemand(e.g.,numberofvehicleschargingsimultaneously),griddemand,orboth.

?Utilities.TheabilitytomakeDCFCsa

controllableloadhelpsutilitiestobetter

planforandmanagethegrid.Actualimpactsofcontrollabilitywillvarydependingon

how,when,where,andhowquicklyDCFCscanbecontrolled.Mostofthepriorstudieswereviewedsuggestthatutilitiesdesire

controllableDCFCs.

?Stationhosts.Bymanagingpeakdemand,stationhostsmaybeabletolowertheir

monthlybills(e.g.,demandcharges)and

couldpotentiallybepaidtoparticipateinEVmanagedchargingordemandresponse(DR)programsandevents,thoughtheseremainrelativelyraresofar.Thepracticeoflimitingtotalstationpowerduringtimesofpeak

utilizationisalreadycommonamong

stationhosts.

?EVdrivers.DriverswillmostlikelyexperiencechargingdelaysandreducedlevelofservicewhenEVchargingismanaged.However,

driversmayalsobecompensatedforthis

inconveniencewithdiscounts,payments,orotherperks.

Toensurethelong-termfinancialviabilityofDCFC

stations,itisimportantthatstationhostssiteand

sizechargingequipmentandstationswiththe

intentionofmaximizingutilization.Utilitieswill

alwaysattempttorecovercostsonboththeenergydelivered(consumption)andmaximumpower

available(capacity).Buildinglargerstationsenablesmorethroughput,butalsorequireshigherutilizationtocoverdemandcharges.Forstationswithlimitedutilization–suchasthoselocatedfarfromurban

areasormajorcorridors–aratetariffwithareduceddemandcharge,eliminateddemandcharge,oronewithcappedmaximummonthlyenergycostswill

tendtoofferbetterfinancialreturnsthanstandardC&Icustomerratesthatincludedemandcharges.Wheredemandchargesremainhighandmonthlyenergycostsarenotcapped,aco-locatedBESS

couldprovidemore-favorableoperatingcostsrelativetobaselineconditions(i.e.,unfavorableutilityrateoptions).

7

TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS

Contents

EXECUTIVESUMMARY 3

LISTOFACRONYMS 10

INTRODUCTION 11

SITINGANDOPERATINGFASTCHARGINGSTATIONS 12

SitingnewDCFCstations 12

Gridcapacityandstationutilizationconsiderations 14

Customerexperience,expectations,andchargingbehavior 16

TYPESOFUTILITIES,THEIRSIMILARITIES,ANDDIFFERENCES 17

Investor-ownedutility(IOU) 17

Public-powerutility(PPU 19

Electricmembershipcooperative(EMC) 20

RATETARIFFS,DEMANDCHARGES,ANDMITIGATIONSTRATEGIES 21

ReviewofutilitydemandchargesacrosstheUS 23

Experimentalrates,pilottariffs,andrecommendedschedulesforDCFCs 24

Influenceofon-sitestorage,generation,andload-control 25

ENERGYANDECONOMICMODELINGRESULTS 28

Modelingapproach 30

Comparingcommonmitigationstrategies 30

ComparingcommonDCFCstationvenues 34

ADDITIONALCONCERNSANDCONSIDERATIONS 39

Batterylifeanddegradation 3

9

Equityandaccess 40

Batteryswapping 40

Second-lifebatteryapplications

40

Solid-statepowerelectronics 41

Demandresponse 41

Communicationsnetworks 41

CONCLUSIONSANDRECOMMENDATIONS 42

Relativeeffectivenessofcommonmitigationstrategies 42

ObserveddifferencesbyutilitytypeandUSregion 44

Relativecostsandbenefitstostakeholders 45

Recommendationsandsuggestionsforstakeholders 45

8

TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS

BIBLIOGRAPHY 49

APPENDIXA–Backgroundinformation 51

APPENDIXB–Priorresearch 58

Utilityratetariffanalyses 58

Cost-mitigationstrategies 60

DCFC-specificratedesigns 61

DCFCreliability,utilization,andgridimpacts 62

APPENDIXC–Rateanalysis 64

APPENDIXD–Observationsoninternationaldevelopments 71

Norway 71

China 7

1

Germany 72

Japan 73

UnitedKingdom 73

9

TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS

ListofAcronyms

AFC

BESS

DCFC

DCM

DER

DR

EMC

EV

EVSE

EVSP

alternativefuelscorridor;designationbytheUSFederalHighwayAdministration(FHWA)

batteryenergystoragesystem;any

battery-basedenergystoragetechnologydirect-currentfastcharger;high-powerchargersusedforfasterchargingofEVsand/orforcharginglargevehicles

demand-chargemanagement;activelylimitingthemonthlyutilitydemand

charge

distributedenergyresource;agrid-

connecteddevicethatcanbecalleduponasagridresourcetoproduce,store,or

modulatetheuseofelectricity

demandresponse;reducingelectricitydemandduringcriticalgridevents

electricmembershipcooperative;a

member-owned,non-profitenterpriseactingasanelectricutility

electricvehicle;refersgenerallytoany

vehiclethatcanpluginanddrawelectricalpowerfromagrid

electricvehiclesupplyequipment;a

generaltermforEV-chargingequipmentelectricvehicleserviceprovider;avendorofferingEV-chargingservices

IOUinvestor-ownedutility;aprivatelyownedenterpriseactingasapublicutility

kWkilowatt;1,000watts(unitofpower)

LFloadfactor;ratioofenergydeliveredtototalpotentialenergydelivery

MWmegawatt;1millionwatts,or1,000kW

PPUpublic-powerutility;anon-profitenterpriseactingasapublicutility

PUCpublicutilitiescommission;quasi-

governmentalbodiesregulatingpublicutilities

RDRreversedemandresponse;increasing

electricitydemandduringtimesofexcessrenewableenergygeneration

RTPreal-timepricing;time-varyingpricing

thatmore-or-lessreflectsrealenergycosts

TEtransactiveenergy;asystemforthedirectbuyingandsellingofelectricitybetweenendusersonaspotmarket,includingreal-timepricesignals

TOUtime-of-use;inreferencetotime-varyingenergypricing

UFutilizationfactor;ratiooftimeelectricalequipmentisusedversusnotused

10

TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS

INTRODUCTION

Thecostofelectricityreflectsthepriceofgenerationanddeliverytoend-usecustomers,buttheexactrelationshipbetweencostandenergypricingis

complicated.Unlikeothercommoditymarkets–includingliquidpetroleumfuels–thepricepaidforelectricityatanygivenmomentintimedoesnotaccuratelyreflecttheactualcostof

deliveringittomarket.

Various“realtimepricing”(RTP)andtransactive

energy(TE)solutionshavebeenpostulated,

proposed,andevenpilotedbyelectricutilitiesandresearchorganizations,butsofar,suchapproachesarenotwidelyadopted.Tocompensateforthe

mismatchinspot-marketenergycostsandprices–andtocomplywithstateandlocalregulations

andmarketrequirements–utilitieshavetendedtodesignever-morediverseandcomplexratetariffs

overtime.Thisservesthepurposeofspreadingthecostofoperatingandmaintainingtheelectricgridevenlyovertimeandtheentire“ratebase”(utilitycustomers),andalsocomplywiththeirobligationtoserveallcustomers.

In2022,electricvehicle(EV)newcarsalessurpassed5%ofmarketshareintheUSforthefirsttime,

andthistrendintransportationelectrificationis

onlyexpectedtoaccelerateinthecomingyears.It

isparticularlyimportantforstakeholdersinthe

UStodevelopasharedunderstandingofrelated

needsandissuesasthefederalgovernment

implementsits

NationalBlueprintforTransportation

Decarbonization

andallocateslargesumsof

moneytobothpublicandprivateeffortstoelectrifytransportationsystems.

11

SITINGAND

OPERATINGFAST

CHARGINGSTATIONS

WhilefederalandstategovernmentshavebeenpartneringwithandfundingEVSPstodeployDCFCsacrosstheUSformorethan10yearsalready,therecontinuestobealotofvariability

whenitcomestostationsiting,sizing,cost,design,layout,access,uptime,andlevelofserviceacrossdifferentnetworks.Tesla’sSupercharger

networkstandsoutastheclear

marketleaderintermsofsize,levelofservice,andcosttodeploy,accordingtofinancialreportsandpublicrecords(e.g.,PluginAmerica,2022).

Roughly60%ofallfastchargersintheUSareownedandoperatedbyTesla,andTesladriversreport

higheruptimesandlowerincidenceof“major

difficulties”whenattemptingtocharge(e.g.,4%forTeslavs.25%fornon-TeslachargingstationsinCalifornia).Teslahasalsostartedtoopenup

itschargernetworktonon-Teslavehiclesthroughits

Non-TeslaSuperchargerPilot

incountries

outsideoftheUS,andhasreporteditplansto

alsoopenupaccessto7,500SuperchargersintheUSbytheendof2024.Asaresult,morethanhalfadozenautomotivemanufacturersandseveral

chargingstationoperatorsandmanufactureshaveannouncedtheywillnowcomplywiththeTesla

chargingspecification,commonlyreferredtonowastheNorthAmericanChargingStandard(NACS;see

NorthAmericanChargingStandard

).

IndiscussionsonfederalfundingtoexpandDCFC

networksalongUSAlternativeFuelsCorridors

(AFCs),theissueofwhatconstitutesanappropriate“minimumdistance”betweenchargingstations

hasbeendiscussedatlength.Ofcourse,itis

difficulttoplanforanoptimalspacingofstations

whenchargerreliabilityremainslowforsome

locations,butthecurrentgoalsetbytheBiden

Administrationisaminimumspacingof50miles

betweenchargingstations.ForDCFCprojectsto

beeligibleforfederalfundingaspartofNEVIin

supportoftheAFCprogram,theymustmeethigherminimumnameplateandoperationalpoweroutputrequirements.Whereasmanyearly-generation

DCFCsoperatedat50kWmaximumpoweroutput,thenewminimumthresholdhasbeensetat150kWormoreperDCFCunitand600kWoraboveperDCFCchargingstationsitetoreceivefundingthroughNEVIinsupportoftheAFCprogram(see

NationalElectric

VehicleInfrastructureStandardsandRequirements

).

SITINGNEWDCFCSTATIONS

ThroughourconversationswithEVSPsandotherDCFCstationhosts,we’velearnedthatthesiting

criteriausedforDCFCdeploymentaresimilar

acrossorganizations.Thesecompaniesseekhightrafficvolumesalongmajorroutes,oftenwithinorconnectingurbancenters.Thiscanleadtomultiple

12

EVSPscompetingforspaceandgridcapacityatthesamelocations,inwhatsomeofthesecompanies

haveself-describedasa“l(fā)andgrab.”Fromautility

perspectivethisisnotideal,sincetheoptimal

locationforsitingaDCFCfordriversisnotalways

co-locatedwithavailablegridcapacityoreaseof

serviceupgrades.Usually,EVSPsareforcedtoqueueinafirst-come,first-servedfashion,justasanyotherutilitycustomermusttypicallydowhenrequestinganew,upgraded,orextendedservice.SomeutilitieslikePacificGasandElectric(PG&E)offerdecision

supporttoolsforstationoperatorsandsitehostsandprovideinformationresourcesontheirwebsites(e.g.,

SiteinformationforelectricvehicleDirectCurrent

FastChargers

).

Importantsitingcriteriaincludetheproximityandlocationofutilityhigh-voltageservice(e.g.,400-or480-volt),theconfigurationofthelotorrestarea,existingdistributiongridcapacityconstraints,andtrenchingdistances.Thesesite-specificfactorscandriveupprojectcostsandextenddevelopment

timelinessignificantly,makingitdifficultto

estimateaveragecostsforDCFCinstallationacrossmultiplelocationswithoutasitevisitandcapacityassessment.Andwhilethechargersthemselves

arethepieceofequipmentthatisseenandused,additionalmake-readyinfrastructureisneededtodeliverpowersafelyfromtheutilityservicedroppointtothevehicles(

Figure1

).

FIGURE1:ADCFCSTATIONREQUIRESHIGH-POWER,MAKE-READYEQUIPMENTTOOPERATE

It’simportanttorememberthatadditional

spaceandcostareneededtoaccommodatetheenablingpowerelectronicsandotherhardwareataDCFCstation.Inmanycases,this“make-

ready”equipment(designatedbyblack-dashed

box)cancostmoreandrequirelongerleadtimestoprocurethanthechargingequipmentitself.

Establishingeasementagreementscanalso

requirealotoftimeandeffort,sometimes

delayingprojectcompletion.Co-locatedstorageand/orgenerationmayalsodeployed(designatedbygreen-dottedbox),buttheseequipmentarenot

*Metermaybelocatedontheothersideofthetransformer

necessarilyrequiredforstationoperation.(adaptedfromFrancfortetal.,2017)

Source:Francfort,J.,ShawnSalisbury,JohnSmart,ThomasGaretson,andDonaldKarner(2017,May).ConsiderationsforCorridorandCommunityDCFastChargingComplexSystemDesign.Retrievedfrom:

/sites/default/files/pdf/reports/DCFCChargingComplexSystemDesign.pdf

13

TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS

Eventhemosthelpfulandcooperative

utilitiesmaystruggletoadequatelysupportplanningandmeet

anticipatedtimelinesonDCFCprojects.

GRIDCAPACITYANDSTATIONUTILIZATIONCONSIDERATIONS

Unfortunately,thereisusuallynosingleorperfectsourceofinformationaboutthestateofthegridinmanyutilityserviceterritories,especiallyforlargesystems.EventhemosthelpfulandcooperativeutilitiesmaystruggletoadequatelysupportplanningandmeetanticipatedtimelinesonDCFCprojects.Forexample,wementionedearlierthatPG&EisaleaderamongutilitieswhenitcomestosupportingDCFCdeployments.

Atthesametime,itisoneofthelargestelectricutilitiesservinga

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論