版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
DemandChargeMitigation
Strategiesfor
PublicEVChargers
Weighingthecostsandbenefitstoutilities,chargingstationsitehosts,andEVdrivers
MARCH2024
Preparedfor:
TheElectricVehicleCounciloftheTransportationEnergyInstitute
Preparedby:ESource
OriginallyfoundedaspartoftheRockyMountainInstitute(RMI),ESourcehasbeensupportingtheelectric,
gas,andwaterutilityindustrieswithresearch,advising,consulting,anddata-scienceservicesfornearly40years.ESourcehelpsmorethan600utilities-thatinturnservemorethan90%ofthepopulationsintheU.S.andCanada-todeliverbest-in-classdecarbonizationandresource-efficiencyprograms,grid-modernizationprojects,andasset-managementandoperationsoptimization.
Reportauthors:BryanJungers
JesseHitchcockBenCampbell
KyleRodriguez
?2024TransportationEnergyInstitute
Disclaimer:TheopinionsandviewsexpressedhereindonotnecessarilystateorreflectthoseoftheindividualsontheTransportationEnergyInstituteBoardofDirectorsandtheTransportationEnergyInstituteBoardofAdvisorsoranycontributingorganizationtotheTransportationEnergyInstitute.TransportationEnergyInstitutemakesnowarranty,expressorimplied,nordoesitassumeanylegalliabilityorresponsibilityfortheuseofthereportoranyproductorprocessdescribedinthesematerials.
TRANSPORTATIONENERGYINSTITUTE|EVC
EXECUTIVESUMMARY
DemandChargeMitigationStrategiesforPublicEVChargers
Electricutilitydemandchargescan
havesignificantimpactsonthebusinessmodelofelectricvehicle(EV)chargingstations.Demandchargesarefeesleviedbyutilitiesoncommercialandindustrial(C&I)customersbasedontheirhighestlevelofelectricitydemandduringa
specifiedbillingperiod,usuallyone
month.Theyaredesignedtorecover
thecostofdeliveringpowerattimesofpeak-powerdemandontheelectricgrid
toexistingelectricutilitycustomers(e.g.,commercialbuildings,
manufacturingfacilities).
Forexample,anelectricutilitycustomerthatinstallsfour150kWEVchargerswouldrequireanadditional600kWofservicetodeliverpeak-powerdemand
tothefacility.Thedemandchargesforthisfacilitywouldbecalculatedbaseduponademandchargerate(expressedintermsof$/kW)multipliedbythehighestlevelofdemandrecordedoveraperiodoftime,oftenoveraperiodof15minutesinagiven
month.Demandchargescanrepresentasignificantportionofabusinesscustomer’selectricitybill,
dependingonhowandwhentheyuseenergy.
(Formoredetailsaboututilityterms,concepts,ratesanddemandcharges,see
AppendixA
beginningonpage51.)
ForEVfast-chargingstations—whichprimarily
employdirect-currentfastcharger(DCFC)
technology—demandchargescanbeparticularly
3
TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS
challenging,asthesestationsoftenhaveahighpeakdemandrelativetotheirtotalenergyconsumption.Theoperatingcharacteristicsofpublic-access
DCFCs—havingvariableanduncertainutilizationcharacteristics—canleadtohighoperatingcosts
relativetorevenues,makingitdifficultforchargingstationsitehoststorecovercostsoroperate
profitably.Forthepurposesofthisstudy,wearefocusedsolelyonoperatingcostsforpublic-accessDCFCstationsusedbylight-dutyconsumerEVs.
Toaddressthesefinancialchallenges,utilities,
solutionproviders,andchargingstationhostsare
allexploringdifferentmitigationstrategiestohelp
loweroperatingcosts.Theseincludeavarietyof
approachesforcontrollingandmanagingelectricitydemand,managingdemandcharges,experimentingwithnewutilityratestructures,identifyingnew
revenuestreamsandbusinessmodels,andgenerallyseekingalternativesfortheprofitableoperation
TABLEES-1:QUALITATIVESUMMARYOFNETCOSTORBENEFITOFEACHMITIGATION
STRATEGYBYSTAKEHOLDERGROUP
STRATEGY
Eliminate
demand
charges
ELECTRICUTILITIES
-
STATION
OPERATORS
+
EVDRIVERS
+
Capenergycosts
-
+
o
Co-locateBESS
o
o
+
Manage
charging
+
o
-
Foreachofthefourdemandchargemitigationstrategies
evaluatedinthisstudy,wesummarizeheretheanticipatednetimpacttoeachstakeholdergroup.A“+”signrepresentsanet
increaseinbenefitsand/ordecreaseincosts,relativetobaselineconditions(i.e.,nomitigation).A“-“signrepresentsanetdecreaseinbenefitsand/orincreaseincosts,anda“o”signrepresents
noimpactorcostsandbenefitsthataremore-or-lessbalanced.Forexample,formanagedchargingwecanseethattheutility
benefitsoverall(loweredgridimpacts/costtoserve),thestationhostexperiencesbalancedcost-benefitoutcomes(lowerenergycostsbutalsopotentialcustomersatisfactionconcerns),andtheEVdrivergenerallyexperiencesadecreaseinbenefits(longerwaittimesorreducedbatterychargepersession).
Source:ESource
ofEVchargingstations.Forexample,DCFCstationhostsmaychoosetoofferpricingdiscountsduringoff-peakdemandperiodsortouseabatteryenergystoragesystem(BESS)tostoreelectricityforuse
duringpeak-demandperiods.Wheresuchoptionsexist,theymayalsobeableenrollindemand
response(DR)orotherutilityprogramstohelp
managepeakdemand,delivergridservices,reduce
energyexpenses,andlowertotalstationoperatingcosts.
TheTransportationEnergyInstitute’sElectric
VehicleCouncilcommissionedthisstudytoevaluatethepotentialeffectsofdifferentdemandcharge
mitigationstrategiesonvariousstakeholders.Theintendedaudiencesforthisstudyarestakeholdersoperatingintheelectricvehiclemarket,includingelectricutilities,EVchargingstationsitehostsandEVdrivers.Theintendedoutcomeistoarticulatehowvariousdemand-chargemitigationstrategiesareexpectedtoimpactcostsandbenefitstokeystakeholdergroupsasEVmarketsevolve.As
willbedemonstrated,differentstrategiesaffect
stakeholdersdifferently;consequently,thisreportisnotintendedtoidentifyapreferredstrategy.
Thoughmyriadpossiblestrategiesexist,belowaresummariesofthemost-commontypesofmitigationstrategiesweidentifiedthroughourresearch.As
shownin
TableES-1
,eachstrategycarrieswithitamixtureofpositive,neutral,ornegativeimplicationsfortheaffectedstakeholdergroups:
1.Reduceoreliminatedemandcharges
forDCFCs.Thismitigationstrategyinvolves
creatingspecialratetariffsor“holiday”periodsforDCFCsthatreduceorremovedemand
chargesintheratestructure.ThiscanbeaneffectivestrategyformitigatingthenegativefinancialimpactsofdemandchargestoDCFCstationhostsinthenearterm.
?Utilities.ThisishowsomeratetariffsforutilityownedDCFCsarecurrentlystructured,leadingtoanunevenplayingfieldforthird-party
4
TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS
stationshostsandoperators.Utilitiesmay
loserevenueifthisstrategyisbroadlyappliedtoallDCFCs.However,theymayalsoattractmorestationdevelopment,projects,andloadtotheirserviceterritorywhenengagedin
activeratereform,withgrowthinrevenuesovertime.Thisoptionmayplaceadditionalfinancialburdenonutilitycustomersinthenearterm,iftherealizedcostsassociated
withservingDCFCstationsarepassed
alongtotheratepayers.Utilitiesshouldalsoconsidertestimonialsandhearingswhich
callintoquestioncoincident-peakimpactsofDCFCstationoperationandtheactualcostsincurredonthegrid.
?Stationhosts.Inmostcases,eliminating
demandchargeswouldreduceenergycostsforEVchargingstationsitehostsimmediately,loweringthecosttooperatethesestations,
improvingtheirmargins,andeliminatingtheneedtoimplementotherdemand-charge
mitigationstrategies.Underidealconditions,thismayencouragebroaderinvestmentsininfrastructurefromtheprivatesector.
?EVdrivers.Totheextentthatloweringor
eliminatingdemandchargesencourages
greaterinvestmentsinEVcharging
infrastructure,EVdriverswillbenefitfrom
suchinvestments.Inthefuture,lowerenergycoststositehostscouldalsotheoretically
bepassedalongtoEVdriversintheformofcompetitivepricing.Intheneartermthesesamedriversmayexperienceincreased
energycostsoverall,whereutilityoperatingcostsarepassedalongtotheratebase,since
allEVdriversarealsoelectricutilitycustomersandthereforeratepayers.Thisapproachmayalsolimittheneedforalternativestrategies
suchaschargemanagement/demandcontrolsthatimpedetherateofEVcharging,therebyimprovingEVdrivers’experience.
2.Capthetotalper-kWhmonthlyenergy
costsforlow-usestations.Thismitigation
strategyinvolvessettingamaximummonthlyenergycostforDCFChosts,typicallybased
onhowmuchenergyisconsumedintotalpermonth(i.e.,maximum$/kWh).Iteliminatesthepossibilityofmassivemonthlybills,helpingtomakeenergycostsforDCFCstationsitehostsmorepredictableandstable.
?Utilities.Thisstrategylimitsrevenueloss
forutilities,relativetoeliminateddemand
charges.However,someofthecostburden
associatedwithservingDCFCsmaystillresidewithutilitiesand/orbepassedalongasrateincreasestoallutilitycustomers.Implicit
inthisstrategyisanassumptionthatas
utilizationratesincrease,demand-basedpricingwillbereintroduced,andcapsmaybescaledrelativetoutilizationorremovedaltogether.
?Stationhosts.Thisstrategyhelpstode-riskDCFCinvestmentsintheneartermby
loweringmonthlyenergycostsandmakingthemmorepredictableandstable.ThiswillhelptoimprovethemarginsassociatedwithDCFCstationoperation.
?EVdrivers.Withimprovedeconomicsforsitehosts,EVdriversmayexperienceancillary
benefits,suchasmoreinstalledDCFC
infrastructure,betternetworkcoverage,andimprovedreliability.
5
TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS
3.Installco-locatedbatteriestohelpmanagepeakdemand.Thismitigationstrategy
involvesinstallinganon-siteBESSatDCFC
stations.Predictiveanalyticsandcontrolsarealsoneededtomanagepeakstationdemandandpowerflowmixfromdistributedenergyresources(DERs).ContinueduseofBESSasaDCMstrategyovertime,however,willlikely
necessitatecontinuousupgradesandscalingtokeeppacewithincreasingDCFCcharge
rates,utilizationrates,andothertechnologicaladvancements.
?Utilities.DERssuchasbatteriescanreducetheneedfordistributionsystemcapacity
upgradesandlineextensionsinsomecases,dependingonsitecharacteristics.Batteriesmayalsobeusedtohelpmanagepeak
monthlydemand,andtoensureagreeablepowerqualitycharacteristicsduringDCFCoperation.Utilitiesmayloserevenues
associatedwithmonthlydemandcharges,buttheircosttoserveDCFCloadswillbeloweredaswell.
?Stationhosts.Cansavemoneyviademand-chargemanagement,dependingonlocal
utilityrates.Wherebatteriesareusedtoavoidgridserviceupgrades,projecttimelinescanbeaccelerated.DERsmayhelpimprovestationreliability,lowercarbonintensity(dependingonlocalgridmix),andimprovethesitehost’sROIifandwhereexcesspowercanbesoldasexportbacktothegrid.GridinterconnectionrequirementsforDERsmayalsodelayprojecttimelinesinsomecases(e.g.,whenexportingpowerbacktothegrid).Thesesystemsalso
becomelesseffectiveatmanagingdemandasstationutilizationincreasesovertime.
?EVdrivers.Whereutilitygridservicesare
limited,anEVmaystillbeabletoreceiveafastchargewhereco-locatedbatteriesareused,
evenduringtimesoflocalizedgridconstraints,
disturbances,oroutages.Thisstrategymay
alsodeliverlower-carbonelectricityforEV
charging,dependingonthelocalutility
gridmix(e.g.,whenpairedwithrenewable
generation).However,duringperiodsofhighstationutilization,thebatterycanbedrainedandtheEVdriverwillexperienceaslower
chargeifthesitehasinsufficientgridcapacity.
6
TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS
4.ManageEVchargingduringpeakperiods.Thismitigationstrategyinvolveslimitingor
reducingthepowerdrawforoneormore
vehicleschargingataDCFCstation.Chargingcanbecontrolledbytheutility,stationhost,orathirdparty,relativetostationdemand(e.g.,numberofvehicleschargingsimultaneously),griddemand,orboth.
?Utilities.TheabilitytomakeDCFCsa
controllableloadhelpsutilitiestobetter
planforandmanagethegrid.Actualimpactsofcontrollabilitywillvarydependingon
how,when,where,andhowquicklyDCFCscanbecontrolled.Mostofthepriorstudieswereviewedsuggestthatutilitiesdesire
controllableDCFCs.
?Stationhosts.Bymanagingpeakdemand,stationhostsmaybeabletolowertheir
monthlybills(e.g.,demandcharges)and
couldpotentiallybepaidtoparticipateinEVmanagedchargingordemandresponse(DR)programsandevents,thoughtheseremainrelativelyraresofar.Thepracticeoflimitingtotalstationpowerduringtimesofpeak
utilizationisalreadycommonamong
stationhosts.
?EVdrivers.DriverswillmostlikelyexperiencechargingdelaysandreducedlevelofservicewhenEVchargingismanaged.However,
driversmayalsobecompensatedforthis
inconveniencewithdiscounts,payments,orotherperks.
Toensurethelong-termfinancialviabilityofDCFC
stations,itisimportantthatstationhostssiteand
sizechargingequipmentandstationswiththe
intentionofmaximizingutilization.Utilitieswill
alwaysattempttorecovercostsonboththeenergydelivered(consumption)andmaximumpower
available(capacity).Buildinglargerstationsenablesmorethroughput,butalsorequireshigherutilizationtocoverdemandcharges.Forstationswithlimitedutilization–suchasthoselocatedfarfromurban
areasormajorcorridors–aratetariffwithareduceddemandcharge,eliminateddemandcharge,oronewithcappedmaximummonthlyenergycostswill
tendtoofferbetterfinancialreturnsthanstandardC&Icustomerratesthatincludedemandcharges.Wheredemandchargesremainhighandmonthlyenergycostsarenotcapped,aco-locatedBESS
couldprovidemore-favorableoperatingcostsrelativetobaselineconditions(i.e.,unfavorableutilityrateoptions).
7
TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS
Contents
EXECUTIVESUMMARY 3
LISTOFACRONYMS 10
INTRODUCTION 11
SITINGANDOPERATINGFASTCHARGINGSTATIONS 12
SitingnewDCFCstations 12
Gridcapacityandstationutilizationconsiderations 14
Customerexperience,expectations,andchargingbehavior 16
TYPESOFUTILITIES,THEIRSIMILARITIES,ANDDIFFERENCES 17
Investor-ownedutility(IOU) 17
Public-powerutility(PPU 19
Electricmembershipcooperative(EMC) 20
RATETARIFFS,DEMANDCHARGES,ANDMITIGATIONSTRATEGIES 21
ReviewofutilitydemandchargesacrosstheUS 23
Experimentalrates,pilottariffs,andrecommendedschedulesforDCFCs 24
Influenceofon-sitestorage,generation,andload-control 25
ENERGYANDECONOMICMODELINGRESULTS 28
Modelingapproach 30
Comparingcommonmitigationstrategies 30
ComparingcommonDCFCstationvenues 34
ADDITIONALCONCERNSANDCONSIDERATIONS 39
Batterylifeanddegradation 3
9
Equityandaccess 40
Batteryswapping 40
Second-lifebatteryapplications
40
Solid-statepowerelectronics 41
Demandresponse 41
Communicationsnetworks 41
CONCLUSIONSANDRECOMMENDATIONS 42
Relativeeffectivenessofcommonmitigationstrategies 42
ObserveddifferencesbyutilitytypeandUSregion 44
Relativecostsandbenefitstostakeholders 45
Recommendationsandsuggestionsforstakeholders 45
8
TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS
BIBLIOGRAPHY 49
APPENDIXA–Backgroundinformation 51
APPENDIXB–Priorresearch 58
Utilityratetariffanalyses 58
Cost-mitigationstrategies 60
DCFC-specificratedesigns 61
DCFCreliability,utilization,andgridimpacts 62
APPENDIXC–Rateanalysis 64
APPENDIXD–Observationsoninternationaldevelopments 71
Norway 71
China 7
1
Germany 72
Japan 73
UnitedKingdom 73
9
TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS
ListofAcronyms
AFC
BESS
DCFC
DCM
DER
DR
EMC
EV
EVSE
EVSP
alternativefuelscorridor;designationbytheUSFederalHighwayAdministration(FHWA)
batteryenergystoragesystem;any
battery-basedenergystoragetechnologydirect-currentfastcharger;high-powerchargersusedforfasterchargingofEVsand/orforcharginglargevehicles
demand-chargemanagement;activelylimitingthemonthlyutilitydemand
charge
distributedenergyresource;agrid-
connecteddevicethatcanbecalleduponasagridresourcetoproduce,store,or
modulatetheuseofelectricity
demandresponse;reducingelectricitydemandduringcriticalgridevents
electricmembershipcooperative;a
member-owned,non-profitenterpriseactingasanelectricutility
electricvehicle;refersgenerallytoany
vehiclethatcanpluginanddrawelectricalpowerfromagrid
electricvehiclesupplyequipment;a
generaltermforEV-chargingequipmentelectricvehicleserviceprovider;avendorofferingEV-chargingservices
IOUinvestor-ownedutility;aprivatelyownedenterpriseactingasapublicutility
kWkilowatt;1,000watts(unitofpower)
LFloadfactor;ratioofenergydeliveredtototalpotentialenergydelivery
MWmegawatt;1millionwatts,or1,000kW
PPUpublic-powerutility;anon-profitenterpriseactingasapublicutility
PUCpublicutilitiescommission;quasi-
governmentalbodiesregulatingpublicutilities
RDRreversedemandresponse;increasing
electricitydemandduringtimesofexcessrenewableenergygeneration
RTPreal-timepricing;time-varyingpricing
thatmore-or-lessreflectsrealenergycosts
TEtransactiveenergy;asystemforthedirectbuyingandsellingofelectricitybetweenendusersonaspotmarket,includingreal-timepricesignals
TOUtime-of-use;inreferencetotime-varyingenergypricing
UFutilizationfactor;ratiooftimeelectricalequipmentisusedversusnotused
10
TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS
INTRODUCTION
Thecostofelectricityreflectsthepriceofgenerationanddeliverytoend-usecustomers,buttheexactrelationshipbetweencostandenergypricingis
complicated.Unlikeothercommoditymarkets–includingliquidpetroleumfuels–thepricepaidforelectricityatanygivenmomentintimedoesnotaccuratelyreflecttheactualcostof
deliveringittomarket.
Various“realtimepricing”(RTP)andtransactive
energy(TE)solutionshavebeenpostulated,
proposed,andevenpilotedbyelectricutilitiesandresearchorganizations,butsofar,suchapproachesarenotwidelyadopted.Tocompensateforthe
mismatchinspot-marketenergycostsandprices–andtocomplywithstateandlocalregulations
andmarketrequirements–utilitieshavetendedtodesignever-morediverseandcomplexratetariffs
overtime.Thisservesthepurposeofspreadingthecostofoperatingandmaintainingtheelectricgridevenlyovertimeandtheentire“ratebase”(utilitycustomers),andalsocomplywiththeirobligationtoserveallcustomers.
In2022,electricvehicle(EV)newcarsalessurpassed5%ofmarketshareintheUSforthefirsttime,
andthistrendintransportationelectrificationis
onlyexpectedtoaccelerateinthecomingyears.It
isparticularlyimportantforstakeholdersinthe
UStodevelopasharedunderstandingofrelated
needsandissuesasthefederalgovernment
implementsits
NationalBlueprintforTransportation
Decarbonization
andallocateslargesumsof
moneytobothpublicandprivateeffortstoelectrifytransportationsystems.
11
SITINGAND
OPERATINGFAST
CHARGINGSTATIONS
WhilefederalandstategovernmentshavebeenpartneringwithandfundingEVSPstodeployDCFCsacrosstheUSformorethan10yearsalready,therecontinuestobealotofvariability
whenitcomestostationsiting,sizing,cost,design,layout,access,uptime,andlevelofserviceacrossdifferentnetworks.Tesla’sSupercharger
networkstandsoutastheclear
marketleaderintermsofsize,levelofservice,andcosttodeploy,accordingtofinancialreportsandpublicrecords(e.g.,PluginAmerica,2022).
Roughly60%ofallfastchargersintheUSareownedandoperatedbyTesla,andTesladriversreport
higheruptimesandlowerincidenceof“major
difficulties”whenattemptingtocharge(e.g.,4%forTeslavs.25%fornon-TeslachargingstationsinCalifornia).Teslahasalsostartedtoopenup
itschargernetworktonon-Teslavehiclesthroughits
Non-TeslaSuperchargerPilot
incountries
outsideoftheUS,andhasreporteditplansto
alsoopenupaccessto7,500SuperchargersintheUSbytheendof2024.Asaresult,morethanhalfadozenautomotivemanufacturersandseveral
chargingstationoperatorsandmanufactureshaveannouncedtheywillnowcomplywiththeTesla
chargingspecification,commonlyreferredtonowastheNorthAmericanChargingStandard(NACS;see
NorthAmericanChargingStandard
).
IndiscussionsonfederalfundingtoexpandDCFC
networksalongUSAlternativeFuelsCorridors
(AFCs),theissueofwhatconstitutesanappropriate“minimumdistance”betweenchargingstations
hasbeendiscussedatlength.Ofcourse,itis
difficulttoplanforanoptimalspacingofstations
whenchargerreliabilityremainslowforsome
locations,butthecurrentgoalsetbytheBiden
Administrationisaminimumspacingof50miles
betweenchargingstations.ForDCFCprojectsto
beeligibleforfederalfundingaspartofNEVIin
supportoftheAFCprogram,theymustmeethigherminimumnameplateandoperationalpoweroutputrequirements.Whereasmanyearly-generation
DCFCsoperatedat50kWmaximumpoweroutput,thenewminimumthresholdhasbeensetat150kWormoreperDCFCunitand600kWoraboveperDCFCchargingstationsitetoreceivefundingthroughNEVIinsupportoftheAFCprogram(see
NationalElectric
VehicleInfrastructureStandardsandRequirements
).
SITINGNEWDCFCSTATIONS
ThroughourconversationswithEVSPsandotherDCFCstationhosts,we’velearnedthatthesiting
criteriausedforDCFCdeploymentaresimilar
acrossorganizations.Thesecompaniesseekhightrafficvolumesalongmajorroutes,oftenwithinorconnectingurbancenters.Thiscanleadtomultiple
12
EVSPscompetingforspaceandgridcapacityatthesamelocations,inwhatsomeofthesecompanies
haveself-describedasa“l(fā)andgrab.”Fromautility
perspectivethisisnotideal,sincetheoptimal
locationforsitingaDCFCfordriversisnotalways
co-locatedwithavailablegridcapacityoreaseof
serviceupgrades.Usually,EVSPsareforcedtoqueueinafirst-come,first-servedfashion,justasanyotherutilitycustomermusttypicallydowhenrequestinganew,upgraded,orextendedservice.SomeutilitieslikePacificGasandElectric(PG&E)offerdecision
supporttoolsforstationoperatorsandsitehostsandprovideinformationresourcesontheirwebsites(e.g.,
SiteinformationforelectricvehicleDirectCurrent
FastChargers
).
Importantsitingcriteriaincludetheproximityandlocationofutilityhigh-voltageservice(e.g.,400-or480-volt),theconfigurationofthelotorrestarea,existingdistributiongridcapacityconstraints,andtrenchingdistances.Thesesite-specificfactorscandriveupprojectcostsandextenddevelopment
timelinessignificantly,makingitdifficultto
estimateaveragecostsforDCFCinstallationacrossmultiplelocationswithoutasitevisitandcapacityassessment.Andwhilethechargersthemselves
arethepieceofequipmentthatisseenandused,additionalmake-readyinfrastructureisneededtodeliverpowersafelyfromtheutilityservicedroppointtothevehicles(
Figure1
).
FIGURE1:ADCFCSTATIONREQUIRESHIGH-POWER,MAKE-READYEQUIPMENTTOOPERATE
It’simportanttorememberthatadditional
spaceandcostareneededtoaccommodatetheenablingpowerelectronicsandotherhardwareataDCFCstation.Inmanycases,this“make-
ready”equipment(designatedbyblack-dashed
box)cancostmoreandrequirelongerleadtimestoprocurethanthechargingequipmentitself.
Establishingeasementagreementscanalso
requirealotoftimeandeffort,sometimes
delayingprojectcompletion.Co-locatedstorageand/orgenerationmayalsodeployed(designatedbygreen-dottedbox),buttheseequipmentarenot
*Metermaybelocatedontheothersideofthetransformer
necessarilyrequiredforstationoperation.(adaptedfromFrancfortetal.,2017)
Source:Francfort,J.,ShawnSalisbury,JohnSmart,ThomasGaretson,andDonaldKarner(2017,May).ConsiderationsforCorridorandCommunityDCFastChargingComplexSystemDesign.Retrievedfrom:
/sites/default/files/pdf/reports/DCFCChargingComplexSystemDesign.pdf
13
TRANSPORTATIONENERGYINSTITUTE|EVC|DEMANDCHARGEMITIGATIONSTRATEGIESFORPUBLICEVCHARGERS
Eventhemosthelpfulandcooperative
utilitiesmaystruggletoadequatelysupportplanningandmeet
anticipatedtimelinesonDCFCprojects.
GRIDCAPACITYANDSTATIONUTILIZATIONCONSIDERATIONS
Unfortunately,thereisusuallynosingleorperfectsourceofinformationaboutthestateofthegridinmanyutilityserviceterritories,especiallyforlargesystems.EventhemosthelpfulandcooperativeutilitiesmaystruggletoadequatelysupportplanningandmeetanticipatedtimelinesonDCFCprojects.Forexample,wementionedearlierthatPG&EisaleaderamongutilitieswhenitcomestosupportingDCFCdeployments.
Atthesametime,itisoneofthelargestelectricutilitiesservinga
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年安徽省中考英語(yǔ)試題含解析
- 心理健康教育習(xí)題
- 協(xié)方差相關(guān)系數(shù)
- 高中語(yǔ)文專(zhuān)題三雜記第3課越州趙公救災(zāi)記課件蘇教版選修唐宋八大家散文蚜
- 2014-2020年鋼軌行業(yè)咨詢(xún)報(bào)告
- 2013-2015年中國(guó)公路治安卡口系統(tǒng)行業(yè)市場(chǎng)調(diào)查分析及生產(chǎn)技術(shù)工藝研究報(bào)告
- 2024至2030年中國(guó)微型直流風(fēng)扇行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 緩和醫(yī)療科普
- 2024至2030年中國(guó)尼龍縫紉線數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024至2030年中國(guó)多股漆包絞線數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2023-2024年江蘇省數(shù)學(xué)競(jìng)賽初賽試題(原題 詳解)
- 成本轉(zhuǎn)嫁方案
- 貴醫(yī)研究353衛(wèi)生綜合真題(完整)
- ARDS機(jī)械通氣參數(shù)設(shè)置:小潮氣量、低平臺(tái)壓、高PEEP
- 家庭教育百問(wèn)百答匯總
- 幼兒園食譜播報(bào)
- 文言文司馬遷《屈原賈生列傳》司馬遷《報(bào)任安書(shū)》閱讀練習(xí)及答案
- 04光伏區(qū)PHC管樁試樁方案
- 七年級(jí)上冊(cè)第二單元作業(yè)設(shè)計(jì)
- 新疆特色林果業(yè)發(fā)展及產(chǎn)業(yè)化戰(zhàn)略研究
- 建筑垃圾清運(yùn)投標(biāo)方案(技術(shù)方案)
評(píng)論
0/150
提交評(píng)論