版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2025屆陜西省安康市漢濱高中高二上數(shù)學期末監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,為雙曲線的兩個焦點,點P在雙曲線上且滿足,那么點P到x軸的距離為()A. B.C. D.2.過點且與橢圓有相同焦點的雙曲線方程為()A B.C. D.3.拋物線的焦點為F,A,B是拋物線上兩點,若,若AB的中點到準線的距離為3,則AF的中點到準線的距離為()A.1 B.2C.3 D.44.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.等比數(shù)列{}中,已知=8,+=4,則的值為()A.1 B.2C.3 D.56.有下列三個命題:①“若,則互為相反數(shù)”的逆命題;②“若,則”的逆否命題;③“若,則”的否命題.其中真命題的個數(shù)是A.0 B.1C.2 D.37.直線的一個法向量為()A. B.C. D.8.設、分別為具有公共焦點與的橢圓和雙曲線的離心率,為兩曲線的一個公共點,且滿足,則的值為()A. B.C. D.9.“,”是“方程表示雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.圍棋起源于中國,據(jù)先秦典籍世本記載:“堯造圍棋,丹朱善之”,至今已有四千多年歷史.圍棋不僅能抒發(fā)意境、陶冶情操、修身養(yǎng)性、生慧增智,而且還與天象易理、兵法策略、治國安邦等相關聯(lián),蘊含著中華文化的豐富內(nèi)涵.在某次國際圍棋比賽中,規(guī)定甲與乙對陣,丙與丁對陣,兩場比賽的勝者爭奪冠軍,根據(jù)以往戰(zhàn)績,他們之間相互獲勝的概率如下:甲乙丙丁甲獲勝概率乙獲勝概率丙獲勝概率丁獲勝概率則甲最終獲得冠軍的概率是()A.0.165 B.0.24C.0.275 D.0.3611.已知雙曲線的左右焦點分別為、,過點的直線交雙曲線右支于A、B兩點,若是等腰三角形,且,則的周長為()A. B.C. D.12.已知函數(shù)的圖象是下列四個圖象之一,且其導函數(shù)的圖象如圖所示,則該函數(shù)的圖象是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.橢圓方程為橢圓內(nèi)有一點,以這一點為中點的弦所在的直線方程為,則橢圓的離心率為______14.已知為坐標原點,、分別是雙曲線的左、右頂點,是雙曲線上不同于、的動點,直線、與軸分別交于點、兩點,則________15.直線l過拋物線的焦點F,且l與該拋物線交于不同的兩點,.若,則弦AB的長是____16.已知隨機變量X服從正態(tài)分布,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左頂點、上頂點和右焦點分別為,且的面積為,橢圓上的動點到的最小距離是(1)求橢圓的方程;(2)過橢圓的左頂點作兩條互相垂直的直線交橢圓于不同的兩點(異于點).①證明:動直線恒過軸上一定點;②設線段中點為,坐標原點為,求的面積的最大值.18.(12分)在數(shù)列中,,點在直線上.(1)求的通項公式;(2)記的前項和為,且,求數(shù)列的前項和.19.(12分)已知圓:,,為圓上的動點,若線段的垂直平分線交于點.(1)求動點的軌跡的方程;(2)已知為上一點,過作斜率互為相反數(shù)且不為0的兩條直線,分別交曲線于,,求的取值范圍.20.(12分)如圖,在平面直角標系中,已知n個圓與x軸和線均相切,且任意相鄰的兩個圓外切,其中圓.(1)求數(shù)列通項公式;(2)記n個圓的面積之和為S,求證:.21.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點,M是棱PC的中點,,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值22.(10分)如圖,在三棱柱中,平面,,.(1)求證:平面;(2)點M在線段上,且,試問在線段上是否存在一點N,滿足平面,若存在求的值,若不存在,請說明理由?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】設,由雙曲線的性質(zhì)可得的值,再由,根據(jù)勾股定理可得的值,進而求得,最后利用等面積法,即可求解【詳解】設,,為雙曲線的兩個焦點,設焦距為,,點P在雙曲線上,,,,,,的面積為,利用等面積法,設的高為,則為點P到x軸的距離,則,故選:D【點睛】本題考查雙曲線的性質(zhì),難度不大.2、D【解析】設雙曲線的方程為,再代點解方程即得解.【詳解】解:由得,所以橢圓的焦點為.設雙曲線的方程為,因為雙曲線過點,所以.所以雙曲線的方程為.故選:D3、C【解析】結(jié)合拋物線的定義求得,由此求得線段的中點到準線的距離【詳解】拋物線方程為,則,由于中點到準線的距離為3,結(jié)合拋物線的定義可知,即,所以線段的中點到準線的距離為.故選:C4、B【解析】因但5、C【解析】由等比數(shù)列性質(zhì)求出公比,將原式化簡后計算【詳解】設等比數(shù)列{}的公比為,則=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故選:C6、B【解析】①寫出命題的逆命題,可以進行判斷為真命題;②原命題和逆否命題真假性相同,而通過舉例得到原命題為假,故逆否命題也為假;③寫出命題的否命題,通過舉出反例得到否命題為假【詳解】①“若,則互為相反數(shù)”的逆命題是,若互為相反數(shù),則;是真命題;②“若,則”,當a=-1,b=-2,時不滿足,故原命題為假命題,而原命題和逆否命題真假性相同,故得到命題為假;③“若,則”的否命題是若,則,舉例當x=5時,不滿足不等式,故得到否命題是假命題;故答案為B.【點睛】這個題目考查了命題真假的判斷,涉及命題的否定,命題的否命題,逆否命題,逆命題的相關概念,注意原命題和逆否命題的真假性相同,故需要判斷逆否命題的真假時,只需要判斷原命題的真假7、B【解析】直線化為,求出直線的方向向量,因為法向量與方向向量垂直,逐項驗證可得答案.【詳解】直線的方向向量為,化為,直線的方向向量為,因為法向量與方向向量垂直,設法向量為,所以,由于,A錯誤;,故B正確;,故C錯誤;,故D錯誤;故選:B.8、A【解析】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,利用橢圓和雙曲線的定義可得出,再利用勾股定理可求得結(jié)果.【詳解】設橢圓的長半軸長為,雙曲線的實半軸長為,不妨設,由橢圓和雙曲線的定義可得,所以,,設,因為,則,由勾股定理得,即,整理得,故.故選:A.9、A【解析】根據(jù)雙曲線的方程以及充分條件和必要條件的定義進行判斷即可【詳解】由,可知方程表示焦點在軸上的雙曲線;反之,若表示雙曲線,則,即,或,所以“,”是“方程表示雙曲線”的充分不必要條件故選:A10、B【解析】先求出甲第一輪勝出的概率,再求出甲第二輪勝出的概率,即可得出結(jié)果.【詳解】甲最終獲得冠軍的概率,故選:B.11、A【解析】設,.根據(jù)雙曲線的定義和等腰三角形可得,再利用余弦定理可求得,從而可得的周長.【詳解】由雙曲線可得設,.則,,所以,因為是等腰三角形,且,所以,即,所以,所以,,在中,由余弦定理得,即,所以,解得,的周長故選:A【點睛】關鍵點點睛:根據(jù)雙曲線的定義求解是解題關鍵.12、A【解析】利用導數(shù)與函數(shù)的單調(diào)性之間的關系及導數(shù)的幾何意義即得.【詳解】由函數(shù)f(x)的導函數(shù)y=f′(x)的圖像自左至右是先減后增,可知函數(shù)y=f(x)圖像的切線的斜率自左至右先減小后增大,且,在處的切線的斜率為0,故BCD錯誤,A正確.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,利用“點差法”得到,即可求出離心率.【詳解】設直線與橢圓交于,則.因為AB中點,則.又,相減得:.所以所以所以,所以,即離心率.故答案為:.14、3【解析】求得坐標,設出點坐標,求得直線的方程,由此求得兩點的縱坐標,進而求得.【詳解】依題意,設,則,直線的方程為,則,直線的方程為,則,所以.故答案為:15、4【解析】由題意得,再結(jié)合拋物線的定義即可求解.【詳解】由題意得,由拋物線的定義知:,故答案為:4.16、##25【解析】根據(jù)正態(tài)分布曲線的對稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)①證明見解析;②【解析】(1)根據(jù)題意得,,解方程即可;(2)①設直線:,直線:,聯(lián)立曲線分別求出點和的坐標,求直線方程判斷定點即可;②根據(jù)題意得,代入求最值即可.【小問1詳解】根據(jù)題意得,,,又,三個式子聯(lián)立解得,,,所以橢圓的方程為:【小問2詳解】①證明:設兩條直線分別為和,根據(jù)題意和得斜率存在且不等于;因為,所以設直線:,直線:;由,解得,所以,同理,.當時,,所以直線的方程為:,整理得,此時直線過定點;當時,直線的方程為:,此時直線過定點,故直線恒過定點.②根據(jù)題意得,,,,所以,當且僅當,即時等號成立,故的面積的最大值為:.【點睛】解決直線與橢圓綜合問題時,要注意:(1)注意觀察應用題設中的每一個條件,明確確定直線、橢圓的條件;(2)強化有關直線與橢圓聯(lián)立得出一元二次方程后的運算能力,重視根與系數(shù)之間的關系、弦長、斜率、三角形的面積等問題18、(1)(2)【解析】(1)由定義證明數(shù)列是等差數(shù)列,再由得出通項公式;(2)先由求和公式得出,再由裂項相消求和法求和即可.【小問1詳解】由題意可知,,所以數(shù)列是公差的等差數(shù)列又,所以,故小問2詳解】,則故19、(1)動點的軌跡的方程為;(2)的取值范圍.【解析】(1)由條件線段的垂直平分線交于點可得,由此可得,根據(jù)橢圓的定義可得點的軌跡為橢圓,結(jié)合橢圓的標準方程求動點的軌跡的方程;(2)由(1)可求點坐標,設直線的方程為,,聯(lián)立方程組化簡可得,,由直線,的斜率互為相反數(shù)可得的值,再由弦長公式求的長,再求其范圍.【小問1詳解】由題知故.即即在以為焦點且長軸為4的橢圓上則動點的軌跡的方程為:;【小問2詳解】故即.設:,聯(lián)立(*),,∴,,又則:即若,則過,不符合題意故,∴,故20、(1).(2)證明見解析.【解析】(1)由已知得,設圓分別切軸于點,過點作,垂足為.在從而有得,由等比數(shù)列的定義得數(shù)列是以為首項,為公比的等比數(shù)列.由此求得答案;(2)由(1)得再由圓的面積公式和等比數(shù)列求和公式計算可得證.【小問1詳解】解:直線的傾斜角為則圓心在直線上,,設圓分別切軸于點,過點作,垂足為.在中,所以即化簡得,變形得,所以是以為首項,為公比的等比數(shù)列.,.【小問2詳解】解:由(1)得所以,所以.21、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面垂直,即可求證;(2)建立空間直角坐標系,利用向量法求線面角.【小問1詳解】因為Q為AD的中點,,所以,又因為平面底面ABCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標系,如圖,根據(jù)題意,則,,,,,由M是棱PC的中點可知,,設平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個法向量為,所以,所以直線PB與平面MQB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年寧夏貨運從業(yè)資格證模擬考試答案大全
- 2025年房屋標準室內(nèi)裝修合同范文
- 2025山東勞動合同條例
- 2025車體廣告合同范本
- 2024年海南省中考物理真題卷及答案解析
- 交通運輸服務項目招投標議程
- 快遞行業(yè)知識產(chǎn)權(quán)保護
- 智能制造培訓合同
- 游泳池建設圍擋施工合同
- 酒店設備采購技巧
- 戴明的質(zhì)量管理
- 《企業(yè)如何合理避稅》課件
- 2024年中國出版集團公司招聘筆試參考題庫含答案解析
- 2024年病案室工作總結(jié)與計劃
- 2022-2023學年山東省淄博市張店區(qū)青島版(五年制)三年級上冊期末考試數(shù)學試卷
- 市場營銷中的數(shù)據(jù)分析與應用培訓課件
- 與采購方配合措施方案
- 《幼兒園美術(shù)課件:認識卡通人物》
- 專題01 選擇基礎題一-2020-2021學年四川八年級上期末數(shù)學試題分類匯編(四川專用)(解析版)
- 雙選會策劃方案
- 特種設備安全風險管控清單
評論
0/150
提交評論