版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆新疆生產(chǎn)建設兵團一師高級中學高三數(shù)學第一學期期末監(jiān)測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區(qū)進行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為()A.8 B.7 C.6 D.52.已知函數(shù),其中,,其圖象關于直線對稱,對滿足的,,有,將函數(shù)的圖象向左平移個單位長度得到函數(shù)的圖象,則函數(shù)的單調遞減區(qū)間是()A. B.C. D.3.函數(shù)的部分圖象大致為()A. B.C. D.4.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.5.點為的三條中線的交點,且,,則的值為()A. B. C. D.6.已知集合則()A. B. C. D.7.已知函數(shù),,若對任意,總存在,使得成立,則實數(shù)的取值范圍為()A. B.C. D.8.已知等差數(shù)列的前13項和為52,則()A.256 B.-256 C.32 D.-329.對兩個變量進行回歸分析,給出如下一組樣本數(shù)據(jù):,,,,下列函數(shù)模型中擬合較好的是()A. B. C. D.10.執(zhí)行下面的程序框圖,則輸出的值為()A. B. C. D.11.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.012.已知,,則()A. B. C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.為激發(fā)學生團結協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個班進行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經(jīng)參加比賽的場次為__________.14.若正實數(shù)x,y,滿足x+2y=5,則x215.拋物線的焦點到準線的距離為.16.能說明“在數(shù)列中,若對于任意的,,則為遞增數(shù)列”為假命題的一個等差數(shù)列是______.(寫出數(shù)列的通項公式)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關.列聯(lián)表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進工作作風,提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87918.(12分)已知△ABC三內角A、B、C所對邊的長分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.19.(12分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.20.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.21.(12分)如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明::(2)求直線與平面所成角的正弦值;(3)若為棱上一點,滿足,求二面角的余弦值.22.(10分)已知函數(shù)f(x)=x-lnx,g(x)=x2-ax.(1)求函數(shù)f(x)在區(qū)間[t,t+1](t>0)上的最小值m(t);(2)令h(x)=g(x)-f(x),A(x1,h(x1)),B(x2,h(x2))(x1≠x2)是函數(shù)h(x)圖像上任意兩點,且滿足>1,求實數(shù)a的取值范圍;(3)若?x∈(0,1],使f(x)≥成立,求實數(shù)a的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(?。〤(丙);A(甲,丙)B(?。〤(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.2、B【解析】
根據(jù)已知得到函數(shù)兩個對稱軸的距離也即是半周期,由此求得的值,結合其對稱軸,求得的值,進而求得解析式.根據(jù)圖像變換的知識求得的解析式,再利用三角函數(shù)求單調區(qū)間的方法,求得的單調遞減區(qū)間.【詳解】解:已知函數(shù),其中,,其圖像關于直線對稱,對滿足的,,有,∴.再根據(jù)其圖像關于直線對稱,可得,.∴,∴.將函數(shù)的圖像向左平移個單位長度得到函數(shù)的圖像.令,求得,則函數(shù)的單調遞減區(qū)間是,,故選B.【點睛】本小題主要考查三角函數(shù)圖像與性質求函數(shù)解析式,考查三角函數(shù)圖像變換,考查三角函數(shù)單調區(qū)間的求法,屬于中檔題.3、B【解析】
圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況?!驹斀狻浚势婧瘮?shù),四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。4、B【解析】
由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.5、B【解析】
可畫出圖形,根據(jù)條件可得,從而可解出,然后根據(jù),進行數(shù)量積的運算即可求出.【詳解】如圖:點為的三條中線的交點,由可得:,又因,,.故選:B【點睛】本題考查三角形重心的定義及性質,向量加法的平行四邊形法則,向量加法、減法和數(shù)乘的幾何意義,向量的數(shù)乘運算及向量的數(shù)量積的運算,考查運算求解能力,屬于中檔題.6、B【解析】
解對數(shù)不等式可得集合A,由交集運算即可求解.【詳解】集合解得由集合交集運算可得,故選:B.【點睛】本題考查了集合交集的簡單運算,對數(shù)不等式解法,屬于基礎題.7、C【解析】
將函數(shù)解析式化簡,并求得,根據(jù)當時可得的值域;由函數(shù)在上單調遞減可得的值域,結合存在性成立問題滿足的集合關系,即可求得的取值范圍.【詳解】依題意,則,當時,,故函數(shù)在上單調遞增,當時,;而函數(shù)在上單調遞減,故,則只需,故,解得,故實數(shù)的取值范圍為.故選:C.【點睛】本題考查了導數(shù)在判斷函數(shù)單調性中的應用,恒成立與存在性成立問題的綜合應用,屬于中檔題.8、A【解析】
利用等差數(shù)列的求和公式及等差數(shù)列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數(shù)列的求和公式及等差數(shù)列的性質,等差數(shù)列的等和性應用能快速求得結果.9、D【解析】
作出四個函數(shù)的圖象及給出的四個點,觀察這四個點在靠近哪個曲線.【詳解】如圖,作出A,B,C,D中四個函數(shù)圖象,同時描出題中的四個點,它們在曲線的兩側,與其他三個曲線都離得很遠,因此D是正確選項,故選:D.【點睛】本題考查回歸分析,擬合曲線包含或靠近樣本數(shù)據(jù)的點越多,說明擬合效果好.10、D【解析】
根據(jù)框圖,模擬程序運行,即可求出答案.【詳解】運行程序,,
,,,,,結束循環(huán),故輸出,故選:D.【點睛】本題主要考查了程序框圖,循環(huán)結構,條件分支結構,屬于中檔題.11、B【解析】
根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質是到達哪個點以及計算白螞蟻爬完2020段后實質是到達哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.12、A【解析】
根據(jù)復數(shù)相等的特征,求出和,再利用復數(shù)的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數(shù)的特征和復數(shù)的模,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
根據(jù)比賽場次,分析,畫出圖象,計算結果.【詳解】畫圖所示,可知目前(五)班已經(jīng)賽了2場.故答案為:2【點睛】本題考查推理,計數(shù)原理的圖形表示,意在考查數(shù)形結合分析問題的能力,屬于基礎題型.14、8【解析】
分析:將題中的式子進行整理,將x+1當做一個整體,之后應用已知兩個正數(shù)的整式形式和為定值,求分式形式和的最值的問題的求解方法,即可求得結果.詳解:x2-3x+1+2點睛:該題屬于應用基本不等式求最值的問題,解決該題的關鍵是需要對式子進行化簡,轉化,利用整體思維,最后注意此類問題的求解方法-------相乘,即可得結果.15、【解析】試題分析:由題意得,因為拋物線,即,即焦點到準線的距離為.考點:拋物線的性質.16、答案不唯一,如【解析】
根據(jù)等差數(shù)列的性質可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設,則,很明顯為遞減數(shù)列,說明原命題是假命題.所以,答案不唯一,符合條件即可.【點睛】本題考查對等差數(shù)列的概念和性質的理解,關鍵是假設出一個遞減的數(shù)列,還需檢驗是否滿足命題中的條件,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】
(1)根據(jù)題意,結合已知數(shù)據(jù)即可填寫列聯(lián)表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計算公式求得分布列,結合分布列即可求得數(shù)學期望.【詳解】(1)因為樣本數(shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天453075辦理社保手續(xù)所需時間超過4天16560225總計21090300結合列聯(lián)表可算得.有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關.(2)根據(jù)分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.【點睛】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數(shù)學期望,涉及分層抽樣,屬綜合性中檔題.18、(1);(2)或.【解析】
(1)利用正弦定理對已知代數(shù)式化簡,根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點睛】此題考查利用正余弦定理求解三角形,關鍵在于熟練掌握正弦定理進行邊角互化,利用余弦定理求解邊長,根據(jù)面積公式求解面積.19、(1);(2).【解析】
(1)對求導,對參數(shù)進行分類討論,根據(jù)函數(shù)單調性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉化不等式得,令,化簡得,因此,,最后根據(jù)導數(shù)研究對應函數(shù)單調性,確定對應函數(shù)最值,即得取值集合.【詳解】(1),當時,對恒成立,與題意不符,當,,∴時,即函數(shù)在單調遞增,在單調遞減,∵和時均有,∴,解得:,綜上可知:的取值范圍;(2)由(1)可知,則,由的任意性及知,,且,∴,故,又∵,令,則,且恒成立,令,而,∴時,時,∴,令,若,則時,,即函數(shù)在單調遞減,∴,與不符;若,則時,,即函數(shù)在單調遞減,∴,與式不符;若,解得,此時恒成立,,即函數(shù)在單調遞增,又,∴時,;時,符合式,綜上,存在唯一實數(shù)符合題意.【點睛】利用導數(shù)研究不等式恒成立或存在型問題,首先要構造函數(shù),利用導數(shù)研究函數(shù)的單調性,求出最值,進而得出相應的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構造函數(shù),直接把問題轉化為函數(shù)的最值問題.20、(1)證明見解析;(2).【解析】
(1)證明后可得平面,從而得,結合已知得線面垂直;(2)以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,寫出各點坐標,求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【詳解】(1)證明:因為,為中點,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,則,,,,,.設平面的法向量,則,即,令,則;設平面的法向量,則,即,令,則,所以.故銳二面角的余弦值為.【點睛】本題考查證明線面垂直,解題時注意線面垂直與線線垂直的相互轉化.考查求二面角,求空間角一般是建立空間直角坐標系,用向量法易得結論.21、(1)證明見解析(2)(3)【解析】
(1)根據(jù)題意以為坐標原點,建立空間直角坐標系,寫出各個點的坐標,并表示出,由空間向量數(shù)量積運算即可證明.(2)先求得平面的法向量,即可求得直線與平面法向量夾角的余弦值,即為直線與平面所成角的正弦值;(3)由點在棱上,設,再由,結合,由空間向量垂直的坐標關系求得的值.即可表示出.求得平面和平面的法向量,由空間向量數(shù)量積的運算求得兩個平面夾角的余弦值,再根據(jù)二面角的平面角為銳角即可確定二面角的余弦值.【詳解】(1)證明:∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴,,,,,,.(2),設平面的法向量為.則,代入可得,令解得,即,設直線與平面所成角為,由直線與平面夾角可知所以直線與平面所成角的正弦值為.(3),由點在棱上,設,故,由,得,解得,即,設平面的法向量為,由,得,令,則取平面的法向量,則二面角的平面角滿足,由圖可知,二面角為銳二面角,故二面角的余弦值為.【點睛】本題考查了空間向量的綜合應用,由空間向量證明線線垂直,求直線與平面夾角及平面與平面形成的二面角大小,計算量較大,屬于中檔題.22、(1)m(t)=(2)a≤2-2.(3)a≤2-2.【解析】
(1)是研究在動區(qū)間上的最值問題,這類問題的研究方法就是通過討論函數(shù)的極值點與所研究的區(qū)間的大小關系來進行求解.(2)注意到函數(shù)h(x)的圖像上任意不同兩點A,B連線的斜率總大于1,等價于h(x1)-h(huán)(x2)<x1-x2(x1<x2)恒成立,從而構造函數(shù)F(x)=h(x)-x在(0,+∞)上單調遞增,進而等價于F′(x)≥0在(0,+∞)上恒成立來加以研究.(3)用處理恒成立問題來處
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建師范大學《運動技能學習與控制》2021-2022學年第一學期期末試卷
- 福建師范大學《土壤地理學實驗》2022-2023學年第一學期期末試卷
- 福建師范大學《數(shù)字信號處理應用一》2022-2023學年第一學期期末試卷
- 福建師范大學《數(shù)學》2021-2022學年第一學期期末試卷
- 福建師范大學《基金管理學實驗》2023-2024學年第一學期期末試卷
- 統(tǒng)編版八年級第一學期語文期中測試卷
- 電氣質量驗收規(guī)范考試題
- 教師教科研現(xiàn)狀與需求調查問卷
- 7《請到我的家鄉(xiāng)來》第二課時(教學設計)-部編版道德與法治三年級下冊
- (BZ1)中建西北院BIM標準
- GB/T 12220-1989通用閥門標志
- 初級插花理論知識考核試題及答案
- 河南省洛陽市《綜合能力測試》事業(yè)單位國考真題
- 法醫(yī)物證學第十二章血痕檢驗1
- 智慧消防整體解決方案消防大數(shù)據(jù)一體化管理平臺解課件
- 國家自然科學基金申請經(jīng)驗匯總課件
- 社會實踐鑒定表
- 2022版義務教育(化學)課程標準(含2022年修訂部分)
- 公司吸煙管理規(guī)定范文
- 消毒記錄表(簡單模板)
- 東北抗聯(lián)精神很實用-學習東北抗聯(lián)精神共24張課件
評論
0/150
提交評論