河南省鄭州市中原區(qū)第一中學(xué)2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第1頁
河南省鄭州市中原區(qū)第一中學(xué)2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第2頁
河南省鄭州市中原區(qū)第一中學(xué)2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第3頁
河南省鄭州市中原區(qū)第一中學(xué)2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第4頁
河南省鄭州市中原區(qū)第一中學(xué)2025屆數(shù)學(xué)高二上期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省鄭州市中原區(qū)第一中學(xué)2025屆數(shù)學(xué)高二上期末檢測模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知命題:,;命題:,使,若“”為假命題,則實(shí)數(shù)的取值范圍是()A. B.C. D.2.已知實(shí)數(shù),滿足不等式組,若,則的最小值為()A. B.C. D.3.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-34.已知直線l經(jīng)過,兩點(diǎn),則直線l的傾斜角是()A.30° B.60°C.120° D.150°5.已知雙曲線的焦距為,且雙曲線的一條漸近線與直線平行,則雙曲線的方程為()A. B.C. D.6.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在7.雙曲線的焦點(diǎn)坐標(biāo)為()A. B.C. D.8.一質(zhì)點(diǎn)的運(yùn)動(dòng)方程為(位移單位:m,時(shí)間單位:s),則該質(zhì)點(diǎn)在時(shí)的瞬時(shí)速度為()A.4 B.12C.15 D.219.已知點(diǎn),動(dòng)點(diǎn)P滿足,則點(diǎn)P的軌跡為()A橢圓 B.雙曲線C.拋物線 D.圓10.設(shè)橢圓C:的左、右焦點(diǎn)分別為、,P是C上的點(diǎn),⊥,∠=,則C的離心率為A. B.C. D.11.已知橢圓的右焦點(diǎn)為F,短軸的一個(gè)端點(diǎn)為P,直線與橢圓相交于A、B兩點(diǎn).若,點(diǎn)P到直線l的距離不小于,則橢圓C離心率的取值范圍為()A. B.C. D.12.拋物線的準(zhǔn)線方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓和直線.(1)求直線l所經(jīng)過的定點(diǎn)的坐標(biāo),并判斷直線與圓的位置關(guān)系;(2)求當(dāng)k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.14.已知定義在上的偶函數(shù)的導(dǎo)函數(shù)為,當(dāng)時(shí),有,且,則使得成立的的取值范圍是___________.15.已知橢圓()中,成等比數(shù)列,則橢圓的離心率為_______.16.半徑為R的圓外接于,且,若,則面積的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系內(nèi),已知的三個(gè)頂點(diǎn)坐標(biāo)分別為(1)求邊的垂直平分線所在的直線的方程;(2)若面積為5,求點(diǎn)的坐標(biāo)18.(12分)已知橢圓的離心率,左、右焦點(diǎn)分別為、,點(diǎn)在橢圓上,過的直線交橢圓于、兩點(diǎn).(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求的面積的最大值.19.(12分)如圖所示,在正方體中,點(diǎn),,分別是,,的中點(diǎn)(1)證明:;(2)求直線與平面所成角的大小20.(12分)某地區(qū)2021年清明節(jié)前后3天每天下雨的概率為50%,通過模擬實(shí)驗(yàn)的方法來計(jì)算該地區(qū)這3天中恰好有2天下雨的概率.用隨機(jī)數(shù)x(,且)表示是否下雨:當(dāng)時(shí)表示該地區(qū)下雨,當(dāng)時(shí),表示該地區(qū)不下雨,從隨機(jī)數(shù)表中隨機(jī)取得20組數(shù)如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根據(jù)上述數(shù)表求出該地區(qū)清明節(jié)前后3天中恰好有2天下雨的概率;(2)從2012年到2020年該地區(qū)清明節(jié)當(dāng)天降雨量(單位:)如表:(其中降雨量為0表示沒有下雨).時(shí)間2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221經(jīng)研究表明:從2012年至2021年,該地區(qū)清明節(jié)有降雨的年份的降雨量y與年份t成線性回歸,求回歸直線方程,并計(jì)算如果該地區(qū)2021年()清明節(jié)有降雨的話,降雨量為多少?(精確到0.01)參考公式:,參考數(shù)據(jù):,,,21.(12分)已知拋物線y2=8x.(1)求出該拋物線的頂點(diǎn)、焦點(diǎn)、準(zhǔn)線、對(duì)稱軸、變量x的范圍;(2)以坐標(biāo)原點(diǎn)O為頂點(diǎn),作拋物線的內(nèi)接等腰三角形OAB,|OA|=|OB|,若焦點(diǎn)F是△OAB的重心,求△OAB的周長22.(10分)小張?jiān)?020年初向建行貸款50萬元先購房,銀行貸款的年利率為4%,要求從貸款開始到2030年要分10年還清,每年年底等額歸還且每年1次,每年至少要還多少錢呢(保留兩位小數(shù))?(提示:(1+4%)10≈1.48)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)題意,判斷命題和的真假性,結(jié)合判別式與二次函數(shù)恒成立問題,即可求解.【詳解】根據(jù)題意,由為假命題可得“”為真命題,即p、q都為真命題,故,解得故選:D2、B【解析】作出不等式組對(duì)應(yīng)的平面區(qū)域,然后根據(jù)線性規(guī)劃的幾何意義求得答案.【詳解】作出不等式組所對(duì)應(yīng)的可行域如圖三角形陰影部分,平行移動(dòng)直線直線,可以看到當(dāng)移動(dòng)過點(diǎn)A時(shí),在y軸上的截距最小,聯(lián)立,解得,當(dāng)且僅當(dāng)動(dòng)直線即過點(diǎn)時(shí),取得最小值為,故選:B3、C【解析】由等差數(shù)列的通項(xiàng)公式計(jì)算【詳解】因?yàn)?,,所?故選:C【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式,利用等差數(shù)列通項(xiàng)公式可得,4、C【解析】設(shè)直線l的傾斜角為,由題意可得直線l的斜率,即,∵,∴直線l的傾斜角為,故選:.5、B【解析】根據(jù)焦點(diǎn)在x軸上的雙曲線漸近線斜率為±可求a,b關(guān)系,再結(jié)合a,b,c關(guān)系即可求解﹒【詳解】∵雙曲線1(a>0,b>0)的焦距為2,且雙曲線的一條漸近線與直線2x+y=0平行,∴,∴b=2a,∵c2=a2+b2,∴a=1,b=2,∴雙曲線的方程為故選:B6、A【解析】應(yīng)用直線與圓的相離關(guān)系可得,再由余弦定理及三角形內(nèi)角的性質(zhì)即可判斷三角形的形狀.【詳解】由題設(shè),,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.7、C【解析】把雙曲線方程化為標(biāo)準(zhǔn)形式,直接寫出焦點(diǎn)坐標(biāo).【詳解】,焦點(diǎn)在軸上,,故焦點(diǎn)坐標(biāo)為.故選:C.8、B【解析】由瞬時(shí)變化率的定義,代入公式求解計(jì)算.【詳解】由題意,該質(zhì)點(diǎn)在時(shí)的瞬時(shí)速度為.故選:B9、A【解析】根據(jù)橢圓的定義即可求解.【詳解】解:,故,又,根據(jù)橢圓的定義可知:P的軌跡為橢圓.故選:A.10、D【解析】詳解】由題意可設(shè)|PF2|=m,結(jié)合條件可知|PF1|=2m,|F1F2|=m,故離心率e=選D.點(diǎn)睛:解決橢圓和雙曲線的離心率的求值及范圍問題其關(guān)鍵就是確立一個(gè)關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.11、D【解析】設(shè)橢圓的左焦點(diǎn)為,由題可得,由點(diǎn)P到直線l的距離不小于可得,進(jìn)而可求的范圍,即可得出離心率范圍.【詳解】設(shè)橢圓的左焦點(diǎn)為,P為短軸的上端點(diǎn),連接,如圖所示:由橢圓的對(duì)稱性可知,A,B關(guān)于原點(diǎn)對(duì)稱,則,又,∴四邊形為平行四邊形,∴,又,解得:,點(diǎn)P到直線l距離:,解得:,即,∴,∴.故選:D.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查橢圓離心率的求解,解題的關(guān)鍵是由橢圓定義得出,再根據(jù)已知條件得出.12、A【解析】將拋物線的方程化成標(biāo)準(zhǔn)形式,即可得到答案;【詳解】拋物線的方程化成標(biāo)準(zhǔn)形式,準(zhǔn)線方程為,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、(1)直線過定點(diǎn)P(4,3),直線和圓總有兩個(gè)不同交點(diǎn)(2)k=1,【解析】(1)把直線方程化為點(diǎn)斜式方程即可;(2)由圓的性質(zhì)知,當(dāng)直線與PC垂直時(shí),弦長最短.【小問1詳解】直線方程可化為,則直線過定點(diǎn)P(4,3),又圓C標(biāo)準(zhǔn)方程為,圓心為,半徑為,而,所以點(diǎn)P在圓內(nèi),所以不論k取何值,直線和圓總有兩個(gè)不同交點(diǎn).【小問2詳解】由圓的性質(zhì)知,當(dāng)直線與PC垂直時(shí),弦長最短.,所以k=1時(shí)弦長最短.弦長為.14、【解析】根據(jù)當(dāng)時(shí),有,令,得到在上遞增,再根據(jù)在上的偶函數(shù),得到在上是奇函數(shù),則在上遞增,然后由,得到求解【詳解】∵當(dāng)時(shí),有,令,∴,∴在上遞增,又∵在上的偶函數(shù)∴,∴在上是奇函數(shù)∴在上遞增,又∵,∴當(dāng)時(shí),,此時(shí),0<x<1,當(dāng)時(shí),,此時(shí),,∴成立的的取值范圍是故答案為:﹒15、【解析】根據(jù)成等比數(shù)列,可得,再根據(jù)的關(guān)系可得,然后結(jié)合的自身范圍解方程即可求出【詳解】∵成等比數(shù)列,∴,∴,∴,∴,又,∴故答案為:【點(diǎn)睛】本題主要考查橢圓的離心率的計(jì)算以及等比數(shù)列定義的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題16、【解析】利用正弦定理將已知條件轉(zhuǎn)化為邊之間的關(guān)系,然后用余弦定理求得C;利用三角形面積公式,結(jié)合兩角差的正弦函數(shù)公式和二倍角公式得,再利用輔助角公式得,最后利用函數(shù)的值域計(jì)算得結(jié)論.【詳解】因?yàn)樗杂烧叶ɡ淼茫?,即,所以由余弦定理可得:,又,?由正弦定理得:,,所以,所以當(dāng)時(shí),S最大,.若,則面積的最大值為.故答案為:.【點(diǎn)睛】本題考查了兩角和與差的三角函數(shù)公式,二倍角公式及應(yīng)用,正弦定理,余弦定理,三角形面積公式,函數(shù)的圖象與性質(zhì),屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】(1)由題意直線的斜率公式,兩直線垂直的性質(zhì),求出的斜率,再用點(diǎn)斜式求直線的方程(2)根據(jù)面積為5,求得點(diǎn)到直線的距離,再利用點(diǎn)到直線的距離公式,求得的值【詳解】解:(1),,的中點(diǎn)的坐標(biāo)為,又設(shè)邊的垂直平分線所在的直線的斜率為則,可得的方程為,即邊的垂直平分線所在的直線的方程(2)邊所在的直線方程為設(shè)邊上的高為即點(diǎn)到直線的距離為且解得解得或,點(diǎn)的坐標(biāo)為或18、(1)(2)【解析】(1)利用橢圓的離心率、點(diǎn)在橢圓上以及得到的方程組,進(jìn)而得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和三角形的面積公式得到三角形的面積,再利用基本不等式求其最值.【小問1詳解】解:由題可得,且,將點(diǎn)代入橢圓方程,得,解得,,即橢圓方程為;【小問2詳解】解:由(1)可得,,設(shè):,聯(lián)立,消去,得,設(shè),,則,則所以,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故的面積的最大值為.19、(1)證明見解析(2)【解析】(1)連接,可得,從而可證四邊形是平行四邊形,從而證明結(jié)論.(2)以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸,建立空間直角坐標(biāo)系,利用向量法求解線面角.【小問1詳解】如圖,連接在正方體中,且因?yàn)?,分別是,的中點(diǎn),所以且又因?yàn)槭堑闹悬c(diǎn),所以,且,所以四邊形是平行四邊形,所以【小問2詳解】以為坐標(biāo)原點(diǎn),分別以,,所在直線為,,軸,建立如圖所示的空間直角坐標(biāo)系設(shè),則,,,,,,設(shè)為平面的法向量因?yàn)?,,,所以令,得設(shè)直線與平面所成角為,則因?yàn)椋灾本€與平面所成角的大小為20、(1),;(2);該地區(qū)2020年清明節(jié)有降雨的話,降雨量為20.2mm【解析】(1)利用概率模擬求概率;(2)套用公式求回歸直線方程即可.【詳解】解:(1)由題意可知,,解得,即表示下雨,表示不下雨,所給的20組數(shù)據(jù)中714,740,491,272,073,445,435,027,共8組表示3天中恰有兩天下雨,故所求的概率為;(2)由題中所給的數(shù)據(jù)可得,,所以,,所以回歸方程為,當(dāng)時(shí),,所以該地區(qū)2020年清明節(jié)有降雨的話,降雨量為20.2mm【點(diǎn)睛】求線性回歸方程的步驟:①求出;②套公式求出;③寫出回歸方程;④利用回歸方程進(jìn)行預(yù)報(bào);21、(1)見解析;(2)2+4.【解析】(1)由拋物線的簡單幾何性質(zhì)易得結(jié)果;(2)由|OA|=|OB|可知AB⊥x軸,又焦點(diǎn)F是△OAB的重心,則|OF|=|OM|=2.設(shè)A(3,m),代入y2=8x即可得到△OAB的周長【詳解】(1)拋物線y2=8x的頂點(diǎn)、焦點(diǎn)、準(zhǔn)線、對(duì)稱軸、變量x的范圍分別為(0,0),(2,0),x=-2,x軸,x≥0.(2)如圖所示.由|OA|=|OB|可知AB⊥x軸,垂足為點(diǎn)M,又焦點(diǎn)F是△OAB的重心,則|OF|=|OM|.因?yàn)镕(2,0),所以|OM|=|OF|=3.所以M(3,0).故設(shè)A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論